1 |
Integrating Methods for Characterizing the Passive Treatment of Mercury and Selenium in Groundwater and SedimentGibson, Blair Donald January 2011 (has links)
Standard geochemical analysis methods, such as aqueous geochemistry analysis and mineralogical analysis, frequently are utilized to evaluate the effectiveness of passive treatment systems, though they do not necessarily provide information regarding the mechanism of removal. Two emerging analytical techniques have shown promise by providing additional information to improve characterization of treatment systems: X-ray absorption spectroscopy (XAS) and stable isotope analysis. In this thesis, these novel analytical techniques were integrated with standard geochemical measurements to better characterize contaminated sites as well as potential treatment technologies used to mitigate aqueous contaminant mobility. Laboratory experiments were used to evaluate the removal of Se(VI) form simulated groundwater using granular Fe0 (GI) and organic carbon (OC). Greater than 90 % removal of Se(VI) was observed for systems containing GI after 5 days of reaction time and only 15 % removal was observed in systems containing OC. Synchrotron radiation-based XAS analysis of the treatment materials indicated the presence of both Se(IV) and Se(0) on the edges of GI grains after 6 hours reaction time, with no evidence of oxidized Se after 5 days of reaction. Several analytical techniques were integrated to characterize sediment contaminated with Hg and other contaminants through previous industrial practices. Analysis of the sediment by XAS indicated the possible presence of mercury selenide and copper sulfide. Resuspension tests were performed in oxic and anoxic conditions to simulate the effects of changing geochemical conditions of Hg release from sediments during dredging operations. The results indicated a higher release of Hg under oxic conditions in some sediment locations, suggesting that oxidative degradation of organic carbon or oxidative dissolution of Hg sulfides contributed to Hg release. The treatment of aqueous Hg(II) was evaluated with a variety of treatment media, including clay and GI. Treatment with GI was rapid, with 90 % removal observed after 2 hours reaction time. Extended X-ray absorption fine structure (EXAFS) analysis indicated the presence of Hg-O bonding on GI, suggesting that Hg was bound to Fe oxides formed on the surface of corroded GI. A new conceptual model for tracking the stable isotope fractionation of sulfur was coupled to the reactive transport model MIN3P to determine the effects of secondary transformations on sulfur cycling in passive treatment systems. Minor differences were noted when comparing the transport model-derived fractionation factor to calculations using a simplified Rayleigh distillation model, possibly indicating the effect of SO4 precipitation. The incorporation of stable isotope modeling provides a framework for the modeling of other isotope systems in treatment technologies.
|
2 |
Integrating Methods for Characterizing the Passive Treatment of Mercury and Selenium in Groundwater and SedimentGibson, Blair Donald January 2011 (has links)
Standard geochemical analysis methods, such as aqueous geochemistry analysis and mineralogical analysis, frequently are utilized to evaluate the effectiveness of passive treatment systems, though they do not necessarily provide information regarding the mechanism of removal. Two emerging analytical techniques have shown promise by providing additional information to improve characterization of treatment systems: X-ray absorption spectroscopy (XAS) and stable isotope analysis. In this thesis, these novel analytical techniques were integrated with standard geochemical measurements to better characterize contaminated sites as well as potential treatment technologies used to mitigate aqueous contaminant mobility. Laboratory experiments were used to evaluate the removal of Se(VI) form simulated groundwater using granular Fe0 (GI) and organic carbon (OC). Greater than 90 % removal of Se(VI) was observed for systems containing GI after 5 days of reaction time and only 15 % removal was observed in systems containing OC. Synchrotron radiation-based XAS analysis of the treatment materials indicated the presence of both Se(IV) and Se(0) on the edges of GI grains after 6 hours reaction time, with no evidence of oxidized Se after 5 days of reaction. Several analytical techniques were integrated to characterize sediment contaminated with Hg and other contaminants through previous industrial practices. Analysis of the sediment by XAS indicated the possible presence of mercury selenide and copper sulfide. Resuspension tests were performed in oxic and anoxic conditions to simulate the effects of changing geochemical conditions of Hg release from sediments during dredging operations. The results indicated a higher release of Hg under oxic conditions in some sediment locations, suggesting that oxidative degradation of organic carbon or oxidative dissolution of Hg sulfides contributed to Hg release. The treatment of aqueous Hg(II) was evaluated with a variety of treatment media, including clay and GI. Treatment with GI was rapid, with 90 % removal observed after 2 hours reaction time. Extended X-ray absorption fine structure (EXAFS) analysis indicated the presence of Hg-O bonding on GI, suggesting that Hg was bound to Fe oxides formed on the surface of corroded GI. A new conceptual model for tracking the stable isotope fractionation of sulfur was coupled to the reactive transport model MIN3P to determine the effects of secondary transformations on sulfur cycling in passive treatment systems. Minor differences were noted when comparing the transport model-derived fractionation factor to calculations using a simplified Rayleigh distillation model, possibly indicating the effect of SO4 precipitation. The incorporation of stable isotope modeling provides a framework for the modeling of other isotope systems in treatment technologies.
|
3 |
Understanding sorption mechanisms of uranium onto elemental iron, minerals and Shewanella putrefaciens surfaces in the presence of arsenicN’zau Umba-di-Mbudi, Clement 11 December 2009 (has links)
The concomitant occurrence and reported discrepant behavior of uranium and arsenic in water bodies is a major health and environmental concern. This study combined batch and column experiments, hydrogeochemical simulations and XAFS spectroscopy to uncover the exchange mechanisms governing uranium fate between water and scrap metallic iron, minerals and Shewanella putrefaciens surfaces in the presence of arsenic. The main results suggest that both water chemistry and the solid phase composition influence uranium fate in the presence of arsenic. The importance of uranyl-arsenate species as a major control of uranium behavior in the presence of arsenic is shown. The toxicity of arsenic and the presence of nitrate are interpreted as limiting factors of the enzymatic reduction of both toxins. Besides, XANES fingerprinting and EXAFS modeling have confirmed precipitation/co-precipitation of uranyl-arsenates as a major mechanism controlling uranium behavior in the presence of arsenic.
|
4 |
Interaction of Actinides with the Predominant Indigenous Bacteria in Äspö Aquifer - Interactions of Selected Actinides U(VI), Cm(III), Np(V) and Pu(VI) with Desulfovibrio äspöensisBernhard, Gert, Selenska-Pobell, Sonja, Geipel, Gerhard, Rossberg, Andre, Merroun, Mohamed, Moll, Henry, Stumpf, Thorsten January 2005 (has links)
Sulfate-reducing bacteria (SRB) frequently occur in the deep granitic rock aquifers at the Äspö Hard Rock Laboratory (Äspö HRL), Sweden. The new SRB strain Desulfovibrio äspöensis could be iso-lated. The objective of this project was to explore the basic interaction mechanisms of uranium, curium, neptunium and plutonium with cells of D. äspöensis DSM 10631T. The cells of D. äspöensis were successfully cultivated under anaerobic conditions as well in an optimized bicarbonate-buffered mineral medium as on solid medium at 22 °C. To study the interaction of D. äspöensis with the actinides, the cells were grown to the mid-exponential phase (four days). The collected biomass was usually 1.0±0.2 gdry weight/L. The purity of the used bacterial cultures was verified using microscopic techniques and by applying the Amplified Ribosomal DNA Restriction Enzyme Analysis (ARDREA). The interaction experiments with the actinides showed that the cells are able to remove all four actinides from the surrounding solution. The amount of removed actinide and the interaction mechanism varied among the different actinides. The main U(VI) removal occurred after the first 24 h. The contact time, pH and [U(VI)]initial influence the U removal efficiency. The presence of uranium caused a damaging of the cell membranes. TEM revealed an accumulation of U inside the bacterial cell. D. äspöensis are able to form U(IV). A complex interaction mechanism takes place consisting of biosorption, bioreduction and bioaccumulation. Neptunium interacts in a similar way. The experimental findings are indicating a stronger interaction with uranium compared to neptunium. The results obtained with 242Pu indicate the ability of the cells of D. äspöensis to accumulate and to reduce Pu(VI) from a solution containing Pu(VI) and Pu(IV)-polymers. In the case of curium at a much lower metal concentration of 3x10-7 M, a pure biosorption of Cm(III) on the cell envelope forming an inner-sphere surface complex most likely with organic phosphate groups was detected. To summarize, the strength of the interaction of D. äspöensis with the selected actinides at pH 5 and actinide concentrations ≥10 mg/L ([Cm] 0.07 mg/L) follows the pattern: Cm > U > Pu >> Np.
|
5 |
The potential of high resolution palaeoclimate reconstruction from Arctica islandicaFoster, Laura January 2007 (has links)
The potential of Arctica islandica, a long lived marine bivalve with a lifespan of over 300 years, to reconstruct a high resolution (sub-annual) climate record is explored in this thesis. Fluctuations in trace element and isotopic data from live-collected specimens from Irvine Bay, NW Scotland are compared to instrumental (particularly temperature) data. X-ray absorption spectroscopy data demonstrate the coordination state of Sr and Mg within the shell. These are consistent with models in which Sr substitutes ideally for Ca in aragonite, and Mg is bound predominantly to organic molecules. Sr/Ca incorporation may be influenced by changes in the crystal nucleation, propagation and growth rate as well as vital effects. However any effect of seawater temperature on Sr/Ca incorporation was obscured by these other factors. Mg concentration is not a linear function of a single environmental variable or organic content within the shell, indicating that Mg uptake is biologically mediated. Ba variation shows sporadic increases (of >500% above baseline) in both shells, the timing of which is similar between the prismatic layer and umbo region. The maxima are, however, not synchronous between the two shells analysed. The controls on Ba uptake require further research, but low Ba/Ca may reflect Ba/Ca concentrations within the seawater. Aliquots taken from cod otoliths show that micromilling has negligible effect on δ¹⁸O. The range of reconstructed temperature from δ¹⁸O profiles Arctica islandica shows good agreement with the sea surface temperature data from the nearby Millport marine station to within 2.1 °C. However, both the interannual and intra-annual variation appears to be sensitive to changes in temporal resolution resulting from changes in growth rates. Modelling of δ¹⁸O highlights dependence on changes in temporal resolution of the sampling, in addition to temperature and salinity. Results from the radiocarbon pilot study show that Arctica islandica is a suitable archive for changes in radiocarbon associated with anthropogenic ¹⁴C fluxes.
|
6 |
New Developments in Nitridometalates and Cyanamides: Chemical, Structural and Physical PropertiesBendyna, Joanna 30 October 2009 (has links)
In the course of these investigations altogether 18 different compounds have been synthesized and their chemical, structural and physical properties were characterized (XRD, XANES, IR, Raman spectrum, magnetic susceptibility, electrical resistivity, low temperature and TG/DTA).
Up to now only nitridonickelates and nitridocuprates were known to exhibit exclusively low oxidation states of the transition metals between 0 and +2. In this work it has been presented that also nitridocobaltates belong to this group. We have proved that “Ca3CoIIIN3” do not exist and the real chemical formula can be regarded as Ca5[CoIN2]2.
In the thesis another seven new nitridocobaltates(I) have been described, these add to four already known structures. Among novel phases only Ba9Ca[Co2N3]3 may indicate higher valency state for cobalt with the [Co2N3]5- complexes. The XANES data supporting CoII state by comparison with other compounds possess this oxidation state. The crystal structure of Ba9Ca[Co2N3]3 is related to the perovskite type structure.
The remarkable structural features of Sr2[CoN2]0.72[CN2]0.28 ≈ Sr6[CoN2]2[CN2] nitridocobaltates [CoIN2]5- ions partially substituted by carbodiimides [N=C=N]2- ions. Up to now in the crystal structure no indications for a homogeneity range could be observed.
Both crystal structures of (Sr6N)[CoN2][CN2]2 and Sr6[CoN2]2[CN2] encompass nitridocobaltate [CoN2]5- and carbodiimide [N=C=N]2- ions. In the structures distorted rocksalt motif based on Sr-N partial structure can be distinguished.
Up to now in the system AE-Fe-N-(C) only four crystal structures were reported and in the thesis three new were refined Sr8[FeIIIN3]2[FeIIN2], Sr3[FeN3] and (Sr6N)[FeN2][CN2]2 and their physical properties were characterized. The system AE-Mn-N-(C) via this work was extended by Sr8[MnN3]3 and Sr4[MnN3][CN2].
Up to date the only nitridometalate containing different transition elements is Ba[Ni1-xCuxN]. In this work one more mixed nitridometalate has been described Sr8[MnIIIN3]2[FeIIN2].
The crystal structure of Sr4[MnN3][CN2] revealed some weak diffuse scattering lines. The general formula of Sr4[MnN3][CN2] can be written as Sr4[Mn0.96N2.90][C0.96N2] to emphasize possible homogeneity range. Any explanation of the phenomena and establishment of possible homogeneity range are still a challenge.
The structures of Sr8[MIIIN3]2[FeIIN2] (M = Mn, Fe) are related to Sr8[MnIVN3]2[MnIIIN3]. All these compounds are first mixed-valency compounds for respective systems and exhibit close relation to crystal structures of Sr3[MN3] (M = Mn, Fe). From the XANES data alike behaviour of all structures containing Mn was observed.
Due to some possible degree of Mn/Fe mixing in the crystal structure of Sr8[MIIIN3]2[FeIIN2] the chemical formula might be written as Sr8[MnN3]2-x[FeN3]x[FeN2]. This needs to be investigate in details.
Up to now in the literature the only crystallographic data of nitridometalates contain [NCN]2- ions include two compounds. In this work four novel nitridometalate carbodiimides and cyanamides Sr4[MnN3][CN2], (Sr6N)[MN2][CN2]2 (M = Co, Fe) and Sr6[CoN2]2[CN2] have been synthesized.
Predominant magnetic properties in the investigated nitridometalates are connected to some antiferromagnetic M-M interactions supported by AFM ordering. The electrical resistivity often shows at some semi-conducting character of these compounds. XANES spectroscopy provided many useful data about valency states of the transition elements, coordination environment around absorbing atoms and electronic structure. The influence of different parameters on the transition metals K-edges was studied in details. IR and Raman give general data about [NCN]2- ions.
|
7 |
Atomic and electronic structure of complex metal oxides during electrochemical reaction with lithiumGriffith, Kent Joseph January 2018 (has links)
Lithium-ion batteries have transformed energy storage and technological applications. They stand poised to convert transportation from combustion to electric engines. The discharge/charge rate is a key parameter that determines battery power output and recharge time; typically, operation is on the timescale of hours but reducing this would improve existing applications and open up new possibilities. Conventionally, the rate at which a battery can operate has been improved by synthetic strategies to decrease the solid-state diffusion length of lithium ions by decreasing particle sizes down to the nanoscale. In this work, a different approach is taken toward next-generation high-power and fast charging lithium-ion battery electrode materials. The phenomenon of high-rate charge storage without nanostructuring is discovered in niobium oxide and the mechanism is explained in the context of the structure–property relationships of Nb2O5. Three polymorphs, T-Nb2O5, B-Nb2O5, and H-Nb2O5, take bronze-like, rutile-like, and crystallographic shear structures, respectively. The bronze and crystallographic shear compounds, with unique electrochemical properties, can be described as ordered, anion-deficient nonstoichiometric defect structures derived from ReO3. The lessons learned in niobia serve as a platform to identify other compounds with related structural motifs that apparently facilitate high-rate lithium insertion and extraction. This leads to the synthesis, characterisation, and electrochemical evaluation of the even more complicated composition–structure–property relationships in ternary TiO2–Nb2O5 and Nb2O5–WO3 phases. Advanced structural characterisation including multinuclear solid-state nuclear magnetic resonance spectroscopy, density functional theory, X-ray absorption spectroscopy, operando high-rate X-ray diffraction, and neutron diffraction is conducted throughout to understand the evolution of local and long-range atomic structure and changes in electronic states.
|
Page generated in 0.0269 seconds