• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

STUDY OF XENON ADSORPTION ON ZEOLITIC IMIDAZOLATE FRAMEWORK - 8

Gallaba, G.M. Dinuka Harshana 01 December 2014 (has links)
The adsorption isotherms can be used to study the properties of a sorbent and to determine the binding energy between a sorbent and a gas that is adsorbed on it. This study that was carried out on a metal organic framework called "Zeolitic imidazolate framework-8" (ZIF-8) as the sorbent. ZIF -8 is known to have a flexible structure and it has shown structural transformation during gas adsorption, at different temperatures. During this study, ZIF-8 was explored using Xenon adsorption. The range of temperatures for the Xenon adsorption isotherms was between 138 K and 157.56 K. During the adsorption of Xenon on ZIF -8 the lowest two isotherms (138 K and 140.39 K) showed two steps. The lower pressure step represents adsorption of Xenon on the "as - produced" ZIF-8. The extra step reflects the structural transition ("gate opening") that occurs due to the re-orientation of the organic linkers in ZIF-8. These changes increase the diameter of the apertures in the structure, and allow more gas molecules to enter in to the ZIF -8 structure. The Xenon adsorption isotherms were also used to determine the effective surface area of ZIF -8 by employing the "point B" method. The binding energy between Xenon and ZIF -8 was found using the isosteric heat for Xenon on ZIF-8 at low coverage. The kinetics of the Xenon adsorption was also studied during this experiment.

Page generated in 0.0241 seconds