• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

STUDY OF XENON ADSORPTION ON ZEOLITIC IMIDAZOLATE FRAMEWORK - 8

Gallaba, G.M. Dinuka Harshana 01 December 2014 (has links)
The adsorption isotherms can be used to study the properties of a sorbent and to determine the binding energy between a sorbent and a gas that is adsorbed on it. This study that was carried out on a metal organic framework called "Zeolitic imidazolate framework-8" (ZIF-8) as the sorbent. ZIF -8 is known to have a flexible structure and it has shown structural transformation during gas adsorption, at different temperatures. During this study, ZIF-8 was explored using Xenon adsorption. The range of temperatures for the Xenon adsorption isotherms was between 138 K and 157.56 K. During the adsorption of Xenon on ZIF -8 the lowest two isotherms (138 K and 140.39 K) showed two steps. The lower pressure step represents adsorption of Xenon on the "as - produced" ZIF-8. The extra step reflects the structural transition ("gate opening") that occurs due to the re-orientation of the organic linkers in ZIF-8. These changes increase the diameter of the apertures in the structure, and allow more gas molecules to enter in to the ZIF -8 structure. The Xenon adsorption isotherms were also used to determine the effective surface area of ZIF -8 by employing the "point B" method. The binding energy between Xenon and ZIF -8 was found using the isosteric heat for Xenon on ZIF-8 at low coverage. The kinetics of the Xenon adsorption was also studied during this experiment.
2

Synthesis of Zeolitic Imidazolate Framework-8-Based Nanocomposites and Applications

Zhuang, Jia January 2015 (has links)
Thesis advisor: Chia-Kuang Tsung / Thesis advisor: Eranthie Weerapana / Metal-Organic Frameworks (MOFs) are crystalline porous materials constructed of metal ions and organic linkers, and have been widely utilized in gas storage, sensing, and chromatographic separation. The combination of MOF nanoparticles with other materials will broaden the utilization of MOF materials to a great extent. Several approaches for creating composites with the MOF, Zeolitic Imidazolate Framework-8 (ZIF-8), have been developed: dye and model drug molecules were encapsulated in ZIF-8 pores for potential drug delivery; mesoporous silica monolayer was epitaxially grown on the ZIF-8 surface for structural stability enhancement and hollow structure formation; UiO-66, another MOF subclass, was hierarchically encased inside ZIF-8 for double-phase gas separation and heterogeneous catalysis. By exploring the versatile ZIF-8 platform, these nanocomposites could have great applications in fields such as heterogeneous catalysis and drug delivery. / Thesis (MS) — Boston College, 2015. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
3

Production And Performance Evaluation Of Zif-8 Based Binary And Ternary Mixed Matrix Membranes

Keser, Nilay 01 August 2012 (has links) (PDF)
Mixed matrix membranes (MMMs) have gained importance because they combine the desirable properties of the polymers and the organic/inorganic filler materials and they may have a very big potential. In this study polyethersulfone (PES) was used as polymeric material, and Zeolitic Imidazolate Framework-8 (ZIF-8) was used as porous filler material, and 2-hydroxy 5-methyl aniline(HMA), was used as a third component in membrane formulation. In this study, ZIF-8 crystals were synthesized with varying particle sizes, and a novel recycling methodology was developed to improve the efficiency of ZIF-8 production. ZIF-8 nano-crystals were synthesized by a 1-hour stirring method at room temperature and characterized by X-ray diffractometer, scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS) and thermal gravimetric analysis (TGA). In order to investigate the effect of ZIF-8 loading on the membrane performance, different types of membranes were prepared with varying amounts of ZIF-8 between 10-60% (w/w). Moreover, ternary mixed matrix membranes were synthesized consisting of different amounts of ZIF-8 between 10-30% (w/w) and HMA 1-10% (w/w). Gas transport properties of the membranes were investigated by single gas permeation experiments of H2, CO2 and CH4 at 3 bar feed pressure. In order to investigate the effect of feed pressure on the gas transport properties of the membranes, single gas experiments were conducted on 3, 6, 8, 10 and 12 bar feed pressures. Moreover, binary gas permeation experiments of CO2/CH4 pair were conducted through selected membranes at 3 bar and 12 bar feed pressures. In addition to gas permeation experiments, the morphology and thermal characteristics of the membranes were characterized by SEM, TGA and differential scanning calorimetry (DSC) analysis. The incorporation of ZIF-8 crystals into continuous PES matrix resulted in high performance gas separation membranes. The permeabilities of all studied gases increased with ZIF-8 loading while the ideal selectivities showed a slight decrease compared to neat PES membrane. Highly reproducible and repeatable results were obtained up to 30 % w/w ZIF-8 loading, while membrane formulation reproducibility was decreased for higher ZIF-8 contents (&gt / 30 w/w %). Addition of HMA improved the gas separation performances of the binary membranes significantly by decreasing permeabilities and increasing ideal selectivities. PES/ZIF-8(%20)/HMA(%7) membrane has the best separation performance for all gases among the ternary membranes. When 7 w/w % HMA was added to PES/ZIF-8(%20) membrane, H2 permeability decreased from 26.3 to 13.7 barrer, while H2/CH4 ideal selectivity increased from 61.8 to 103.7. Increasing feed pressures appreciably increased the separation performances of all membranes. While the H2 permeability is pressure independent, the CO2 and CH4 permeabilities were reduced with increasing feed pressures and the highest selectivity improvement was observed in H2/CH4 pair for all membrane compositions. For instance, when the feed pressure was increased from 3 bar to 12 bar, the percentage improvements in ideal selectivities through PES/ZIF-8(%10)/HMA(%4) membrane were calculated as 26, 69, 113 % for the H2/CO2, CO2/CH4 and H2/CH4 gas pairs / respectively. This results show that working at higher feed pressures will be more advantageous for separation of the studied gas pairs. The ideal selectivities and the separation factors were equal to each other for all membrane compositions both for 3 and 12 bar operating pressures.

Page generated in 0.0246 seconds