• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Order-sensitive View Maintenance of Materialized XQuery Views

Dimitrova, Katica 05 May 2003 (has links)
Materialized XML views are a popular technique for integrating data from possibly distributed and heterogeneous data sources. However, the problem of the incremental maintenance of such XML views poses new challenges which to date remain unaddressed. One, XML views not only filter the data, but may radically restructure it to construct new XML nested document structures. Moreover, order is inherent in the XML model, and XML views reflect both the implicit document order of the underlying sources and the order explicitly imposed in the view definition. Therefore, order also has to be preserved at view maintenance time. In this thesis we present an algebraic approach for the incremental maintenance of XQuery views, called VOX (View maintenance for Ordered XML). To the best of our knowledge, this is the first solution to order-preserving XML view maintenance. Our strategy correctly transforms an update to source XML data into sequences of updates that refresh the view. Our technique is based on an algebraic representation of the XQuery view expression using an XML algebra. The XML algebra has ordered bag semantics; hence most of the operators logically are order preserving. We propose an order-encoding mechanism that migrates the XML algebra to (non-ordered) bag semantics, no longer requiring most of the operators to be order-aware. Furthermore, this now allows most of the algebra operators to become distributive over update operations. This transformation brings the problem of maintaining XML views one step closer to the problem of maintaining views in other (unordered) data models. We are thus now able to adopt some of the existing (relational) maintenance techniques towards our goal of efficient order-sensitive XQuery view maintenance. In addition we develop a full set of rules for propagating updates through XML specific operations. We have proven the correctness of the VOX view maintenance approach. A full implementation of VOX on top of RAINBOW, the XML data management system developed at WPI, has been completed. Our experimental results performed using the data and queries provided by the XMark benchmark, confirm that incremental XML view maintenance indeed is significantly faster than complete recomputation in most cases. Incremental maintenance is shown to outperform recomputation even for large updates.
2

Order-sensitive XML Query Processing Over Relational Sources

Murphy, Brian R 05 May 2003 (has links)
XML is an emerging standard format for data on the Web as well as in business applications. In order to store and access this information in an efficient manner, database technology must be utilized. A relational database system, the most established and mature technology for query processing and storage, creates a strong foundation for such an XML data management system. However, while relational databases are based on SQL queries, the original user queries are written in XQuery, an XML query language. This XML query language has support for order-sensitive queries as XML is an order-sensitive markup language. A major problem has been discovered with loading XML in a relational database. That problem is the lack of native SQL support for and management of order handling. While XQuery has order and positional support, SQL does not have the same support. For example, individuals who were viewing XML information about music albums would have a hard time querying for the first three songs of a track list from a relational backend. Mapping XML documents to relational backends also proves hard as the data models (hierarchical elements versus flat tables) are so different. For these reasons, and other purposes, the Rainbow System is being developed at WPI as a system that bridges XML data and relational data. This thesis in particular deals with the algebra operators that affect order, order sensitive loading and mapping of XML documents, and the pushdown of order handling into SQL-capable query engines. The contributions of the thesis are the order-sensitive rewrite rules, new XML to relational mappings with different order styles, order-sensitive template-driven SQL generation, and a proposed metadata table for order-sensitive information. A system that implements these proposed techniques with XQuery as the XML query language and Oracle as the backend relational storage system has been developed. Experiments were created to measure execution time based on various factors. First, scalability of the system as backend data set size grows is studied. Second, scalability of the system as results returned from the database grows, and finally, query execution times with different loading types are explored. The experimental results are encouraging. Query execution with the relational backend proves to be much faster than native execution within the Rainbow system. These results confirm the practical utility of our proposed order-sensitive XQuery execution solution over relational data.

Page generated in 0.032 seconds