• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Precise determination of the 136Xe – 136Ba atomic mass difference and related mass differences in Ba and Cd

McCowan, Peter 13 January 2010 (has links)
In light of present (EXO) and future (BOREXINO & XMASS) projects searching for evidence of the, as yet, unobserved double-beta decay of 136Xe, an atomic mass difference of 136Xe – 136Ba was determined using the high-precision Manitoba II mass spectrometer at the University of Manitoba. The Q-value for this difference was determined to be 2458.72(56) keV. The double-beta decay mode can be either neutrino (ββ2υ) or neutrinoless (ββ0υ), where the latter would be proof of the Majorana nature of neutrinos. A ββ0υ decay, which violates several principles of the Standard Model of particle physics, would emit only electrons and would provide a defined peak at the Q-value for the decay. This decay would also require the Majorana neutrino to have a non-zero rest mass and be its own antiparticle. Results of mass measurements on mass doublets of 135Ba, 136Ba, 137Ba, and 138Ba will be given. An improved measurement of the 116Cd35Cl - 114Cd37Cl doublet, previously done by Meredith et al. in 1973, will also be given.
2

Precise determination of the 136Xe – 136Ba atomic mass difference and related mass differences in Ba and Cd

McCowan, Peter 13 January 2010 (has links)
In light of present (EXO) and future (BOREXINO & XMASS) projects searching for evidence of the, as yet, unobserved double-beta decay of 136Xe, an atomic mass difference of 136Xe – 136Ba was determined using the high-precision Manitoba II mass spectrometer at the University of Manitoba. The Q-value for this difference was determined to be 2458.72(56) keV. The double-beta decay mode can be either neutrino (ββ2υ) or neutrinoless (ββ0υ), where the latter would be proof of the Majorana nature of neutrinos. A ββ0υ decay, which violates several principles of the Standard Model of particle physics, would emit only electrons and would provide a defined peak at the Q-value for the decay. This decay would also require the Majorana neutrino to have a non-zero rest mass and be its own antiparticle. Results of mass measurements on mass doublets of 135Ba, 136Ba, 137Ba, and 138Ba will be given. An improved measurement of the 116Cd35Cl - 114Cd37Cl doublet, previously done by Meredith et al. in 1973, will also be given.

Page generated in 0.1382 seconds