• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 47
  • 25
  • 18
  • 18
  • 12
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Precise determination of the 136Xe – 136Ba atomic mass difference and related mass differences in Ba and Cd

McCowan, Peter 13 January 2010 (has links)
In light of present (EXO) and future (BOREXINO & XMASS) projects searching for evidence of the, as yet, unobserved double-beta decay of 136Xe, an atomic mass difference of 136Xe – 136Ba was determined using the high-precision Manitoba II mass spectrometer at the University of Manitoba. The Q-value for this difference was determined to be 2458.72(56) keV. The double-beta decay mode can be either neutrino (ββ2υ) or neutrinoless (ββ0υ), where the latter would be proof of the Majorana nature of neutrinos. A ββ0υ decay, which violates several principles of the Standard Model of particle physics, would emit only electrons and would provide a defined peak at the Q-value for the decay. This decay would also require the Majorana neutrino to have a non-zero rest mass and be its own antiparticle. Results of mass measurements on mass doublets of 135Ba, 136Ba, 137Ba, and 138Ba will be given. An improved measurement of the 116Cd35Cl - 114Cd37Cl doublet, previously done by Meredith et al. in 1973, will also be given.
2

Precise determination of the 136Xe – 136Ba atomic mass difference and related mass differences in Ba and Cd

McCowan, Peter 13 January 2010 (has links)
In light of present (EXO) and future (BOREXINO & XMASS) projects searching for evidence of the, as yet, unobserved double-beta decay of 136Xe, an atomic mass difference of 136Xe – 136Ba was determined using the high-precision Manitoba II mass spectrometer at the University of Manitoba. The Q-value for this difference was determined to be 2458.72(56) keV. The double-beta decay mode can be either neutrino (ββ2υ) or neutrinoless (ββ0υ), where the latter would be proof of the Majorana nature of neutrinos. A ββ0υ decay, which violates several principles of the Standard Model of particle physics, would emit only electrons and would provide a defined peak at the Q-value for the decay. This decay would also require the Majorana neutrino to have a non-zero rest mass and be its own antiparticle. Results of mass measurements on mass doublets of 135Ba, 136Ba, 137Ba, and 138Ba will be given. An improved measurement of the 116Cd35Cl - 114Cd37Cl doublet, previously done by Meredith et al. in 1973, will also be given.
3

Physics reach of the global neutrinoless double-beta decay program and systematic uncertainties of the Majorana project /

Gehman, Victor M. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (p. 157-166).
4

Finding excited-state decays of Germanium-76 /

Kazkaz, Kareem. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (p. 170-176).
5

Probing new physics mechanisms in neutrinoless double-beta decay with SNO+

Back, Ashley Robert January 2018 (has links)
In this thesis, I present the theory of neutrinoless double-beta decay (0 2 ), particularly the theory of exotic modes of 0 2 involving the emission of one or two Majorons. Alongside this, I summarise the most recent results in the experimental search for 0 2 , including limits on the rate of these exotic processes. I describe the SNO+ experiment and it's physics goals, which include the search for 0 2 . As part of the SNO+ collaboration, I have made a signi cant contribution towards the development of the data quality software that is essential for ensuring SNO+ can achieve its physics goals-including in 0 2 searches. I describe how I developed a software package that performs the high-level data quality checks. Continuing with the software theme, I then describe a python-based limit-setting and tting software package called echidna. I have been a lead developer of echidna as part of my PhD, so I describe the software in detail and how it can be used to set limits on 0 2 signals. By reproducing the sensitivity results of the KamLAND-Zen experiment, in four key Majoronemitting 0 2 modes, I verify the use of echidna as a limit-setting tool for this type of search. Finally, I present the results of a comprehensive sensitivity study, where I determine the potential sensitivity of SNO+ to the same set of Majoron-emitting modes that KamLAND-Zen and other 0 2 experiments have already investigated.
6

Changes in proton occupancies pertaining to putative neutrinoless double beta decay in 130Te and 136Xe

Entwisle, Jonathan January 2017 (has links)
A systematic study of the change in proton single-particle occupancies in two neutrinoless double beta decay candidates, 130Te to 130Xe and 136Xe to 136Ba, has been performed. Final states in 129Sb, 129I, 135I and 135Cs have been populated using the (d,3He) single proton removal reaction. The deuterons were accelerated to 101 MeV using the coupled azimuthally varying field and Ring cyclotrons at the Research Center for Nuclear Physics, University of Osaka. The outgoing ejectiles were momentum analysed using the Grand Raiden magnetic spectrometer. Absolute cross sections were measured for states up to 7 MeV in excitation. Transferred angular momenta were identified through a comparison of angular distributions with those calculated using the distorted-wave Born approximation. Spectroscopic factors were extracted from the experimental cross sections. In addition to the 0v2B decay candidates the reaction was also performed on 128Te, 132Xe, 134Xe and 138Ba as a consistency check. The occupancies of the nuclei were determined from the spectroscopic factors, the reaction model was normalised using a common normalisation factor across all targets. The change in occupancies between the 0v2B decay candidates and their daughters were then determined. The change in occupancies were then compared with those calculated by interacting shell model, interacting boson model and quasiparticle random phase approximation. This comparison showed that whilst the three theories were qualitatively able to reproduce the change in occupancies, quantitatively there are significant discrepancies. These are the same models that are used to determine the nuclear matrix elements governing the rate of 0v2B decay.
7

Robust Signal Extraction Methods and Monte Carlo Sensitivity Studies for the Sudbury Neutrino Observatory and SNO+ Experiments

WRIGHT, ALEXANDER 15 September 2009 (has links)
The third and final phase of the Sudbury Neutrino Observatory (SNO) experiment utilized a series of 3He proportional counters called Neutral Current Detectors (NCDs) to detect the neutrons produced by the neutral current interactions of solar neutrinos in the detector. The number of neutrons detected by the NCDs, and hence the total flux of 8B solar neutrinos, has been determined using two novel signal extraction techniques which were designed to be robust against potential unexpected behaviour in the NCD background. These techniques yield total 8B solar neutrino flux measurements of 5.04(+0.42-0.40(stat))(+/-0.28(syst))x10E6/cm2/s and (4.40 - 6.43)x10E6/cm2/s, which are in good agreement with previous SNO results and with solar model predictions, and which confirm that previous NCD analyses were not unduly affected by unexpected background behaviour. The majority of the hardware from the now-completed SNO experiment will be reused to create a new liquid scintillator based neutrino experiment called SNO+. An important part of the SNO+ physics program will be a search for neutrinoless double beta decay, carried out by dissolving 150Nd into the scintillator. The sensitivity of the SNO+ experiment to neutrinoless double beta decay has been evaluated. If loaded at 0.1% (w/w) with natural neodymium, after 1 kTa of data taking SNO+ would have a 90%C.L. sensitivity equivalent to a neutrinoless double beta decay half life of 8.0x10E24a or better 50% of the time; if the experiment were run with neodymium enriched to 50% in 150Nd this limit improves to 57x10E24a. Under a reasonable choice for the 150Nd neutrinoless double beta decay matrix element, these half lives correspond to upper limits on the effective Majorana neutrino mass of 112 meV and 42 meV, respectively. These limits are competitive with those expected from all other near-term neutrinoless double beta decay experiments. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-09-10 21:07:00.25
8

Διπλή διάσπαση βήτα

Τσινταβής, Ιωάννης 07 October 2011 (has links)
Η μελέτη της διπλής διάσπασης βήτα έχει πρωτεύουσα σπουδαιότητα για τη φυσική των νετρίνων. Θεωρείται ως ο καλύτερος τρόπος για να εξεταστεί ο θεμελιώδης χαρακτήρας των νετρίνων και να καθοριστεί η μάζα τους. Από πειραματικής πλευράς περίπου εννέα διαφορετικού τύπου ισότοπα χρησιμοποιούνται στα πειράματα. Μετά από μια γενική εισαγωγή ακολουθεί μια σύντομη συζήτηση σχετικά με τη φυσική των νετρίνων και της παρουσίας τους στις β διασπάσεις. Η πειραματική προσέγγιση, οι δυσκολίες που αντιμετωπίζουμε καθώς και η τρέχουσα πειραματική κατάσταση στις διπλές βήτα διασπάσεις συζητιούνται, ακολουθούμενες από μια σύντομη συζήτηση των ιδεών και των προτάσεων των μελλοντικών πειραμάτων που σχεδιάζονται. / Double beta decay research has a major role in neutrino physics. It is considered the best way to examine the nature of neutrinos and to determine their mass. From an experimental point of view, nine different isotopes are being used in the experiments. After a general introduction, a brief discussion about neutrino physics and their role in beta decays will follow. The experimental approach, the difficulties that we face and the current double beta decay experiments will be discussed, followed by another summary of the ideas and the proposals of the future experiments.
9

Search for neutrinoless double beta decay of Cd-116 with the NEMO-3 experiment

Pahlka, Raymond Benton 14 December 2010 (has links)
This dissertation describes the approach taken in measuring two neutrino double beta decay of Cd-116 to the ground state of Sn-116 and in searching for the effective Majorana neutrino mass by placing a lower limit on the half-life for neutrinoless double beta decay of Cd-116 using the powerful technique of a combined tracking chamber and calorimeter with the NEMO-3 detector. The description of the detector, its natural background contamination, and the tools used to perform the analysis are discussed. The single electron channel was used to identify source foil contamination from [beta]-emitters and the electron-gamma channel was used to confirm the previous measurements of Tl-208 and Bi-214 contaminations in the source foil. Using these backgrounds, the two neutrino double beta decay half-life of Cd-116 was measured for the single states dominance hypothesis and the higher states dominance hypothesis. The final data set was defined to be data from Phrase One and Phase Two for the medium and low activity regions. Using 1471 days of data, the values of the half-life for the single data dominance hypothesis and the higher states dominance hypothesis were found. / text
10

Modelling and reconstruction of events in SNO+ related to future searches for lepton and baryon number violation

Coulter, Ian T. January 2013 (has links)
SNO+ is a liquid scintillator experiment whose physics goals include measurements of solar neutrinos, reactor anti-neutrinos, geo neutrinos and double beta decay. During an initial water phase, it will also search for invisible modes of nucleon decay. This thesis investigates methods of improving the detector's sensitivity to the baryon and lepton violating processes of neutrinoless double beta decay and invisible nucleon decay. It does this through an improved scintillator model, allowing the sensitivity of the detector with different loading techniques to be evaluated, through a new background rejection technique, capable of increasing the active volume of the detector, and with the development of improved position fitters, achieving resolutions of approximately 10 cm in scintillator and 25 cm in water. The sensitivity of SNO+ to invisible modes of nucleon decay is explored, predicting, after one month of data, a limit of t > 1.38 x 10<sup>30</sup> years on the decay of neutrons and of t > 1.57 x 10<sup>30</sup> years on the decay of protons.

Page generated in 0.042 seconds