Spelling suggestions: "subject:"xilulose"" "subject:"ceilulose""
1 |
Influência da linhagem da levedura e das condições de cultivo no processo de isomerização e fermentação simultâneas da xiloseMoraes, Guilherme da Silveira 21 March 2013 (has links)
Made available in DSpace on 2016-06-02T19:56:52Z (GMT). No. of bitstreams: 1
5322.pdf: 3668179 bytes, checksum: e3612c159bebd3f0a5be1640868316ae (MD5)
Previous issue date: 2013-03-21 / Financiadora de Estudos e Projetos / The conversion of the hemicellulosic fraction in ethanol is a factor that impacts on the economic viability of the second generation ethanol production process from sugar cane bagasse. Hemicellulose from bagasse is a heteropolymer constituted by pentoses and glucose, being xylose the predominant sugar (~ 21 %). Among the available technological alternatives for ethanol production from xylose, SIF process (Simultaneous Isomerization and Fermentation), consisting of xylose conversion to xylulose by glucose isomerase (GI) enzyme and xylulose fermentation by the yeast S. cerevisiae, is considered a promising alternative. The main objectives of the present work were: i) evaluate the performance of different S. cerevisiae strains towards xylulose intake and ethanol productivity; ii) assess the influence of cultivation conditions (temperature, oxygen availability and initial xylose concentration) upon ethanol and xylitol production by the selected strains; iii) define the operation conditions for the continuous SIF process, using a system of fixed bed reactors associated in series. Preliminary experiments were conducted in 50 mL flasks, containing 4 g of pellets with a load of 20 % of immobilized GI, co-immobilized with yeast (load of 10 %) in alginate gel. For the screening of yeasts showing better performance on ethanol production from xylose, two commercial baker´s yeast strains (Itaiquara® e Fleischmann®), three industrial strains (BG-1, CAT-1 e PE-2) and one lab strain (CEN.PK113-7D) were evaluated. These experiments were performed at 35 oC, using a medium composed by xylose (60 g/L), urea (5 g/L), CaCl2 (1.9g/L) and several salts, at initial pH of 5.6. Additional SIF studies were carried out with the selected yeasts Itaiquara®, BG-1 or CEN.PK113-7D under different temperature conditions (40 oC), aeration (15 mL flasks) and initial xylose concentration (130 g/L) for comparison with the results obtained at the standard conditions. For SIF cultures, samples were withdrawal and the concentrations of reducing sugars were determined by DNS method while xylose, xylulose, ethanol and by-products (xylitol, glycerol etc) concentrations were assessed by liquid chromatography. Cell viability was also measured at the beginning and end of the experiment. When comparing the different yeasts, Itaiquara® strain presented the best performance, reaching ethanol concentrations of 22.4 g/L, with a productivity of 2.1 g/Lh. The conversion of xylose was similar for all studied industrial strains as well as among the baker s yeast and lab strains. Concerning the group of additional experiments, at 40 oC, a decrease of viability and ethanol selectivity was observed for Itaiquara®, whereas productivity and selectivity for CEN.PK113-7D. was improved. For the studies conducted under semianaerobic conditions, the yeast BG-1 showed an increase in selectivity and yield. However, the reaction time increased to app. 45 hours. On the other hand, the performance of strain Itaiquara® was not altered by the lower level of oxygen tested. In the experiment with 120 g/L of xylose, more than 40 g/L of ethanol was obtained in 24 hours of cultivation. Thus, we conclude that the SIF process proposed in the present work is a viable alternative for the production of ethanol from xylose or lignocellulosic residues. For the operation of the continuous system composed by fixed bed reactors associated in series, the recommended conditions include the Itaiquara® yeast with a temperature no higher than 35 oC, keeping the total residence time around 10 hours for a feeding supply containing 60 g/L of xylose. / A conversão da fração hemicelulósica da biomassa em etanol é um dos fatores que impactam a viabilidade econômica do processo de produção de etanol de segunda geração a partir do bagaço de cana-de-açúcar. A hemicelulose do bagaço é um heteropolímero constituído por pentoses e glicose, sendo a xilose o açúcar predominante (~ 21 %). Dentre as diversas alternativas tecnológicas para a produção de etanol a partir de xilose, o processo SIF (Simultânea Isomerização e Fermentação), consistindo na isomerização da xilose em xilulose pela enzima glicose-isomerase (GI) e na fermentação da xilulose pela levedura S. cerevisiae, é considerado uma alternativa promissora. Os principais objetivos do presente trabalho foram: i) avaliar o desempenho de diferentes cepas de S. cerevisiae em termos de assimilação de xilulose e produtividade em etanol; ii) estudar a influência das condições de cultivo (disponibilidade de oxigênio, temperatura e da concentração inicial de xilose) na produção de etanol e xilitol pelas cepas selecionadas; iii) definir as condições de operação para um processo SIF contínuo em sistema de reatores de leito fixo associados em série. Os experimentos preliminares foram conduzidos em frascos de 50 mL contendo 4 g de pelletes com carga de 20 % de glicose isomerase imobilizada, coimobilizada com levedura (carga de 10%) em gel de alginato. Para a seleção da levedura com melhor desempenho na produção de etanol a partir de xilose, foram avaliadas duas linhagens de levedura de panificação comercial (Itaiquara® e Fleischmann®), três cepas industriais (BG-1, CAT-1 e PE-2) e uma utilizada em laboratório (CEN.PK113-7D). Esses experimentos SIF foram conduzidos a 35ºC utilizando meio composto por xilose (60 g/L), ureia (5 g/L), CaCl2 (1,9 g/L) e sais diversos, em pH inicial 5,6. Experimentos SIF complementares foram realizados com as leveduras selecionadas Itaiquara®, BG-1 ou CEN.PK113-7D em diferentes condições de temperatura (40oC), aeração (frascos de 15 mL) e concentração inicial de xilose (130 g/L) para comparação com os resultados obtidos nas condições padrão. Em todos os experimentos SIF, amostras foram retiradas para determinação da concentração de açúcares redutores (método DNS) e de xilose, xilulose, etanol e subprodutos (xilitol, glicerol etc.) por cromatografia em fase líquida. Foi também acompanhada a viabilidade celular ao longo do cultivo. Na comparação entre as diferentes leveduras, destacou-se especialmente a levedura Itaiquara®, alcançando concentrações de etanol de 22,4 g/L, com produtividade em etanol de 2,1 g/Lh. A conversão de xilose foi semelhante entre as leveduras industriais e entre as leveduras de panificação e a de laboratório. Quanto ao conjunto de experimentos complementares, na temperatura de 40ºC houve diminuição de viabilidade e seletividade em etanol para a Itaiquara® e melhora na produtividade e seletividade para a CEN.PK113-7D. Nos experimentos realizados em condições semianaeróbias, a levedura BG-1 apresentou aumento de seletividade e rendimento em etanol, porém para um tempo de reação de 45 horas, aproximadamente. Já a levedura Itaiquara® não teve seu desempenho influenciado pela menor disponibilidade de oxigênio. No experimento realizado com 130 g/L de xilose, alcançou-se mais de 40 g/L de etanol em 24 horas de cultivo. Conclui-se, assim, que o processo SIF de xilose, proposto no presente trabalho, é uma alternativa viável para a produção de etanol a partir de xilose ou de resíduos lignocelulósicos. Para a operação em sistema contínuo composto por reatores de leito fixo associados em série recomenda-se a utilização de levedura Itaiquara® e de temperatura de, no máximo, 35ºC, mantendo-se o tempo de residência total em torno de 10 horas para uma alimentação contendo 60 g/L de xilose.
|
2 |
Aplicação de técnicas de modelagem e simulação para a produção de etanol de segunda geraçãoMontaño, Inti Doraci Cavalcanti 20 September 2013 (has links)
Made available in DSpace on 2016-06-02T19:55:37Z (GMT). No. of bitstreams: 1
5536.pdf: 2735660 bytes, checksum: 14dceb0da38443c19f1b8c8410041cad (MD5)
Previous issue date: 2013-09-20 / Universidade Federal de Minas Gerais / The use of fossil fuels has a significant impact on the environment, making biofuels a renewable and friendly alternative. Brazil, as one of the leading producers of sugar and ethanol, generates as main residue sugar cane bagasse, which is usually burned for power generation. However, this biomass can be reused as raw material for the production of second generation bioethanol (2G). The consolidation of the industrial production of second-generation (2G) bioethanol relies on the improvement of the economics of the process. Thus, it is important the use of both the fermentable fractions present in sugarcane bagasse, cellulose (C6) and hemicellulose (C5), for the economically feasible process. Within this general scope, the second chapter of this thesis addresses one aspect that impacts the costs of the biochemical route for producing 2G bioethanol: defining optimal operational policies for the reactor running the enzymatic hydrolysis of the C6 biomass fraction. A simple Michaelis Menten pseudo-homogeneous kinetic model with product inhibition was used in the dynamic modeling of a fed-bath reactor, and two feeding policies were implemented and validated in bench-scale reactors processing pre-treated sugarcane bagasse. The first policy was defined with the purpose of sustaining high rates of glucose production, adding enzyme (Accellerase® 1500) and substrate simultaneously during the reaction course. The second approach applied classical optimal control theory, for determining optimal substrate feeding profiles, in order to maximize the performance index proposed. Economical criteria were used for comparing the reactor performance operating in successive batches and in fed-batch modes. Fed-batch mode was less sensitive to enzyme prices than successive batches. Process intensification in the fed-batch reactor led to final glucose concentrations around 200 g/L. The third chapter, in turn, focuses on the xylose utilization, the main sugar found in the C5 fraction, for fermentation to ethanol by yeast Saccharomyces cerevisiae. Although this yeast is not capable of fermenting xylose, it is able to ferment D-xylulose obtained by isomerisation of xylose by glucose isomerase enzyme, generating ethanol and/or xylitol as the main products. The optimization of ethanol production requires the analysis of the metabolism of xylulose. In this context, the genome-scale metabolic model iND750 was adjusted. In silico experiments were carried out using the software OptFlux and compared with experimental data of batch cultivation of S. cerevisiae, in order to validate the model and establishing relationships between fluxes of assimilating xylulose and oxygen and selectivity in the production of ethanol compared to xylitol. Experiments of simultaneous isomerization and fermentation (SIF) of xylose were carried out in a continuous bioreactor containing alginate pellets as biocatalyst with enzyme glucose isomerase and S. cerevisiae coimobilizated. Final concentrations of 6 g/L of ethanol and 5 g/L of xylitol were achieved in continuous cultivation. / A utilização de combustíveis fósseis tem um significativo impacto no meio ambiente, tornando os biocombustíveis uma alternativa renovável e ambientalmente amigável. O Brasil, por ser um dos principais produtores de açúcar e etanol, gera como principal subproduto dessa indústria, o bagaço de cana de açúcar, que é geralmente queimado para geração de energia. Entretanto, esta biomassa pode ser reaproveitada como matéria-prima para produção de bioetanol de segunda geração (2G). A consolidação da produção industrial de bioetanol 2G baseia-se na melhoria econômica do processo. É importante, assim, o uso de ambas as frações fermentáveis presentes no bagaço de cana, de celulose (C6) e de hemicelulose (C5), para viabilizar economicamente o processo. Neste âmbito geral, o segundo capítulo desta tese de doutorado aborda um aspecto que impacta os custos da rota bioquímica para a produção de bioetanol 2G: definição de políticas operacionais ótimas para um reator de hidrólise enzimática da fração C6 do bagaço de cana de açúcar. Foi utilizado um modelo cinético de Michaelis-Menten pseudohomogêneo, com inibição pelo produto, na modelagem dinâmica de um reator em batelada alimentada e duas políticas de alimentação foram implementadas e validadas em reatores de escala de bancada processando bagaço de cana pré-tratado. A primeira política de alimentação foi definida com a finalidade de sustentar elevadas taxas de produção de glicose, adicionando enzima (Accellerase® 1500) e substrato simultaneamente durante o curso da reação. A segunda política aplica a teoria clássica de controle ótimo, para determinação de perfis ótimos de alimentação de substrato, a fim de maximizar o índice de desempenho proposto. Foram usados critérios econômicos para comparar o desempenho do reator operando em bateladas sucessivas e em modos de batelada alimentada. O modo batelada alimentada foi menos sensível a alterações no preço da enzima do que bateladas sucessivas. Intensificação do processo em batelada alimentada conduziu a concentrações finais de glicose de cerca de 200 g/L. Já o terceiro capítulo foca na utilização da xilose, principal açúcar encontrado na fração C5, para fermentação a etanol pela levedura Saccharomyces cerevisiae. Embora esta levedura seja incapaz de fermentar xilose, pode fermentar a D-xilulose obtida pela isomerização de xilose pela enzima glicose isomerase, gerando etanol e/ou xilitol como produtos principais. A otimização da produção de etanol requer a análise do metabolismo da xilulose. Neste contexto, o modelo metabólico em escala genômica iND750 foi utilizado e ajustado. Experiências in silico usando o software OptFlux foram realizadas e comparadas com dados experimentais de cultivos em batelada de S. cerevisiae, com o propósito de validar o modelo e estabelecer relações entre os fluxos de assimilação de xilulose e de oxigênio e a seletividade na produção de etanol em relação a xilitol. Experimentos de isomerização e fermentação simultâneas da xilose (SIF) foram realizados em reator contínuo de leito fixo, contendo como biocatalisador pellets de alginato com enzima glicose isomerase e S. cerevisiae coimobilizadas. Concentrações finais de 6 g/L de etanol e 5 g/L de xilitol foram alcançadas em cultivo contínuo.
|
3 |
Otimização da produção de etanol 2G a partir de hexoses e pentosesSuarez, Carlos Alberto Galeano 27 February 2014 (has links)
Made available in DSpace on 2016-06-02T19:55:39Z (GMT). No. of bitstreams: 1
5990.pdf: 3991723 bytes, checksum: 8f7428459353354f21c1db08bd391507 (MD5)
Previous issue date: 2014-02-27 / Universidade Federal de Sao Carlos / The industrial production of fuel ethanol and sugar generates the main byproduct of sugarcane bagasse, which is burned in boilers for power generation. However, as a lignocellulosic material (consisting basically of three polymers: cellulose, hemicellulose and lignin), bagasse can be reused for the production of second generation bioethanol (2G), which is a renewable and environmentally friendly biofuel. For industrial 2G bioethanol production becomes economically feasible, the use of all fermentable fractions present in the bagasse is required: C6 fraction (cellulose) and C5 fraction (hemicellulose). These fractions are subjected to hydrolysis processes that generate as main sugars glucose and xylose respectively. It is important, therefore, that the microorganism employed for the production of ethanol 2G is able to utilize all the sugars generated during the hydrolysis process. In this work we chose the yeast Saccharomyces cerevisiae to be the main microorganism used in the industrial production of ethanol, although unfortunately, this yeast is unable to ferment xylose. However, while S. cerevisiae does not use xylose, can ferment xylulose obtained by isomerization of xylose by the enzyme glucose isomerase. The objective of this study was to develop and evaluate technological alternatives for the production of ethanol 2G from hexoses and pentoses using wild S. cerevisiae. In relation to the C6 fraction, in this work two important aspects have been addressed: i) study of the operation regime of a fed-batch reactor enzymatic hydrolysis of the C6 fraction of bagasse from sugarcane, yielding values of final glucose concentration of 200 g.L-1, higher than 45 g.L-1 achieved in batch reactor; ii) kinetic modeling of complex systems (enzymatic hydrolysis of lignocellulosic substrates), in which an interpolator was developed using fuzzy logic as an important tool to represent the processes of enzymatic hydrolysis of lignocellulosic materials for rugged and reliable manner. Now, in relation to the C5 fraction initially applied simple techniques of Evolutionary Engineering, leading to the selection of a different strain of S. cerevisiae, adapted to assimilate xylulose in minimal medium and characterized by reduced formation of xylitol, which demonstrated a selectivity of ~7 getanol.gxilitol -1, significantly higher than the selectivity achieved by the wild strain of ~2 getanol.gxilitol -1. The selected strain was studied in batch cultures conducted in bench scale reactor under different conditions of oxygen limitation. It was found that the production of ethanol is favored over the formation of xylitol, keeping the flow of consumed xylulose above 0,5 mmol.gMS -1.h-1 for flow of oxygen consumption of 0.1 mmol.gMS -1.h-1, reaching in this condition selectivities around 4 getanol.gxilitol -1. For zero flow of oxygen (anaerobic culture) or above 0,3 mmol.gMS -1.h-1, ethanol production is drastically reduced , regardless of the flow xylulose assimilated by the cells. / A produção industrial de etanol combustível e de açúcar gera como principal subproduto o bagaço de cana de açúcar, que é queimado nas caldeiras para geração de energia. Entretanto, por ser um material lignocelulósico (constituído basicamente por três polímeros: celulose, hemicelulose e lignina), o bagaço pode ser reaproveitado para a produção de bioetanol de segunda geração (2G), que é um biocombustível renovável e ambientalmente amigável. Para que a produção industrial de etanol 2G se torne economicamente viável, é necessário o aproveitamento de todas as frações fermentescíveis presentes no bagaço de cana: fração C6 (celulose) e fração C5 (hemicelulose). Estas frações são submetidas a processos de hidrólise que geram como principais açúcares glicose e xilose respetivamente. É importante, portanto, que o microrganismo empregado para a produção de etanol 2G seja capaz de utilizar todos os açúcares gerados no processo de hidrólise. Neste trabalho foi escolhida a levedura Saccharomyces cerevisiae por ser o principal microrganismo utilizado na produção industrial de álcool combustível, embora, infelizmente, esta levedura seja incapaz de fermentar xilose. No entanto, embora S. cerevisiae não utilize xilose, pode fermentar a xilulose obtida pela isomerização de xilose pela enzima xilose isomerase conhecida industrialmente como glicose isomerase. Assim, o objetivo do presente trabalho foi desenvolver e avaliar alternativas tecnológicas para a produção de etanol 2G a partir de hexoses e pentoses, utilizando S. cerevisiae selvagem. Em relação à Fração C6, neste trabalho foram abordados dois aspectos importantes: i) estudo da operação em regime de batelada alimentada de um reator de hidrólise enzimática da fração C6 do bagaço de cana de açúcar, obtendo-se valores de concentração final de glicose de cerca de 200 g.L-1, superiores aos 45 g.L-1 alcançados em reator operado em bateladas simples; ii) modelagem cinética de sistemas complexos (hidrólise enzimática de substratos lignocelulósicos), no qual foi desenvolvido um interpolador utilizando a lógica fuzzy como uma ferramenta importante para representar os processos de hidrólise enzimática de materiais lignocelulósicos de forma robusta e confiável. Já em relação à Fração C5, inicialmente aplicou-se técnicas simples de Engenharia Evolutiva, levando à seleção de uma linhagem diferenciada de S. cerevisiae, adaptada à assimilação de xilulose em meio mínimo e caracterizada por reduzida formação de xilitol, a qual apresentou uma seletividade de ~7 getanol.gxilitol -1, valor significativamente superior à seletividade alcançada pela linhagem selvagem, de ~2 getanol.gxilitol -1. A linhagem selecionada foi então estudada em cultivos em batelada conduzidos em biorreator de bancada, sob diferentes condições de limitação por oxigênio. Verificou-se que a produção de etanol é favorecida, em detrimento da formação de xilitol, mantendo-se o fluxo de xilulose consumida acima de 0,5 mmol.gMS -1.h-1, para fluxo de oxigênio consumido de 0,1 mmol.gMS -1.h-1, alcançando-se nessa condição seletividades em torno de 4 getanol.gxilitol -1. Para fluxos de oxigênio nulo (cultivo anaeróbio) ou acima de 0,3 mmol.gMS -1.h-1, a produção de etanol é drasticamente reduzida, independentemente do fluxo de xilulose assimilado pelas células.
|
Page generated in 0.0338 seconds