• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 34
  • 11
  • 11
  • 10
  • 6
  • 6
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 187
  • 44
  • 43
  • 30
  • 30
  • 29
  • 29
  • 28
  • 25
  • 22
  • 20
  • 17
  • 17
  • 16
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

An investigation into the science of bi-component blending using fibers with widely divergent properties

Spivak, Steven Mark January 1964 (has links)
No description available.
52

Studies on the effect of spinning parameters on the structure and properties of air jet spun yarns

Chasmawala, Rasesh Jayantilal January 1987 (has links)
No description available.
53

A study of the effects produced on yarn qualities by varying the amount of draft in the drawing process

Moore, Roy Lee January 1953 (has links)
No description available.
54

A study of the relationship of tensile strength between single and ply yarns made from all-cotton and all-nylon fibers

Williams, Sidney Wheeler January 1952 (has links)
No description available.
55

Continuous drawing studies of foam fibrillated yarn

Childs, Jack Douglas 12 1900 (has links)
No description available.
56

An evaluation of the use of high temperature procedures for applying direct dyes to cotton yarn

Young, Ernest Napoleon 12 1900 (has links)
No description available.
57

Some factors affecting the properties of conventional rotor spun open-end yarns and open-end spun core yarns

Ali, A. R. A. January 1976 (has links)
No description available.
58

Twist changes in threadlines moving over surfaces

Eltahan, Ahmad Elsayed January 1983 (has links)
An investigation has been carried out into the twist blockage which may occur when yarns pass over guides or other surfaces. The influence of primary physical parameters such as surface curvature, are and length of contact, yarn twist level and tension and yarn/surface friction have been investigated together with secondary parameters such as yarn surface, pressure, angle of approach etc. As a result of these investigations, three mechanisms of blockage have been identified. The first of these occurs especially with doubled yarn in which the components lie side by side on the guide surface and blocked twist builds up until sufficient torque is developed to turn the yarn over against the couple generated by the components of yarn tension and reaction on the guide surface. In the second mechanism blocking torque is generated by components of friction on the yarn surface at right angles to the yarn axis. These orthogonal friction components may arise from interaction between the topography of the twisted yarn surface and the guide surface or may be generated by forces arising from an angular orientation of yarn to guide. The third mechanism is intermediate between the other two where a singles yarn (or its equivalent) is flattened on the surface and resistance to twist transmission is generated partly by internal friction within the yarn and partly by yarn/guide frictional forces. The main circumstances under which these different mechanisms may operate, have been identified and suggestions made for minimising the blockage of twist.
59

The further development, optimisation and application of a Yarn Dismantler

Fassihi, Ali Akbar January 2012 (has links)
The fibre properties of cotton, which vary widely according to genetic and environmental conditions, determine its price and textile processing performance and product quality. It is therefore hardly surprising that cotton fibre properties are routinely measured for trading and quality control purposes, with a great deal of research having been, and still being, devoted towards developing instruments which enable the various fibre properties to be measured rapidly and accurately. In many cases, it is also necessary to be able to measure properties of cotton fibres when they have already been converted into yarn and fabric form. To do so, the yarn has to be dismantled into its component fibres, preferably without significantly changing the fibre properties. This could only be done by manually untwisting the yarn and carefully extracting the fibres from the untwisted yarn, care being taken not to break or lose any fibres in the process. This is a time consuming, laborious and labour intensive process. In view of this, a „yarn dismantler‟ which could automatically, cost effectively and within acceptable time frames, dismantle a cotton yarn into its constituent fibres, without undue damage or changes to the fibres, was developed and patented. This thesis reports the results of research undertaken to further develop, evaluate and optimize the yarn dismantler into the final prototype, as well as those relating to its practical applications, including tracking changes in fibre properties during miniature and pilot scale processing, up to, and including the yarn stage. Initial research undertaken on the original bench and first prototype models indicated that, although they produced very promising results, certain improvements and modifications were necessary, if the dismantler was to perform in an efficient and operator friendly manner at the required speeds. These included changes in the axial position of the untwisting spindle and the perforated screen of the suction drum, increasing the air suction at the perforated drum, installing a new motor for the untwisting spindle drive, separating the drives to the different parts of the unit in order to control them independently, integrating a more effective steaming unit into the unit etc. It was found that the dismantling rate had to be set to equal about 95 percent of the original twist in the yarn, and that steaming of the dismantled (untwisted) yarn on the perforated drum was necessary in order to eliminate any twist liveliness (residual torque) in the dismantled yarn, and enable it to be handled and tested on the AFIS instrument. When the final prototype Yarn Dismantler was produced, incorporating all the above mentioned improvements, it functioned very well at dismantling speeds of at least 2m/min, enabling the length of yarn required for subsequent AFIS testing to be dismantled within an acceptable time of less than 10 minutes, with excellent reproducibility and repeatability of results, also under commercial conditions. It was found that the AFIS measured length characteristics of fibres from the instrument dismantled yarns compared very well with those of fibres from manually dismantled yarns, differences in fibre length generally being less than 1mm, and it was concluded from these and other evaluation tests, that the yarn dismantler produced fibres without any significant fibre breakage. Some limited tests, carried out on commercially produced carded and combed yarns, indicated that short fibre content and dust and trash levels, as measured by the AFIS on fibres from dismantled yarn, together with the corresponding Uster Statistics, could enable a carded cotton yarn to be distinguished from a combed cotton yarn. Statistical analysis of fibre test results obtained at the different stages during miniature and pilot plant scale processing of various cottons, clearly showed that very significant changes in fibre properties could be caused by certain of the processes. For example, significant fibre breakage occurred during the drafting on the spinning frame, prior to twist insertion. The thesis provides detailed results of changes in various fibre properties, including length, short fibre content, maturity, immature fibre content, seed coat neps and fibrous neps, which occurred from the lint to the final yarn, as well as on the relationship between the properties of the fibres from the dismantled yarn and those from the lint. The results obtained have clearly demonstrated the practical value of the yarn dismantler in enabling yarns to be automatically dismantled into their constituent fibres, which can then be tested by an instrument, such as the AFIS, and the test results related to those of the original lint fibres, thereby opening up many fields of research and practical applications, some of which are captured under „Recommended Further Work‟.
60

Modification of Electrospinning Solutions and Yarn Production for Filtration Application

Nartetamrongsutt, Kitchaporn 23 September 2013 (has links)
No description available.

Page generated in 0.0227 seconds