• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Crescimento de monocristais supercondutores de YBa2Cu3O7-ȣ pelo método de fluxo em cadinhos de SnO2. / Single cristal growth of YBa2Cu3O7-ȣ superconductor the flux method using SnO2 crucibles.

Rojas-Ramírez, Roberto Antonio 27 February 1998 (has links)
Made available in DSpace on 2016-06-02T19:11:50Z (GMT). No. of bitstreams: 1 1957.pdf: 2828959 bytes, checksum: 21d0a6bda15b61d8457353156ef268ab (MD5) Previous issue date: 1998-02-27 / Universidade Federal de Sao Carlos / Nowadays, the flux method is one of the most widely used techniques promote growth of YBa2Cu3O7-ȣ single crystal superconductor. By using the material in a melted state, the reactions due to temperature are possible. To prepare single crystal superconductors of the family Y-Ba-Cu-O, a long period of time is necessary to melt the material in adequate conditions. In order to do this a satisfactory performance of the crucible is required; it must be resistant to any kind of chemical attack. In this work some materials used were investigated in crucibles. Platinum, gold (noble metals), oxides like Al2O3, ZrO2 showed problems when used in processing Y123 superconductors. To avoid this problem the zirconiaytria system is largely applied. Some authors have investigated the SnO2 crucible, but they found problems related to the densification of the SnO2. Recently, it was discovered that SnO2 can be densified without liquid phase, showing 99,7% of the theoretical density when sinterized up to 1300°C. Then, this condition was used to produce crucibles by slip casting to form the YBa2Cu3O7-ȣ single crystal superconductors without contamination. It was observed, in a first instance, that SnO2 crucibles are resistant to chemical attack of the flux that is rich in barium and copper. During the process it was observed an interface wall between the vial and the flux formed by BaSnO3. This protection is formed after heat treatment at 1025°C during 4, 17 and 24 hours. By increasing the treatment time (up to 24 hours), it was observed that the wall thickness increased too and it was possible stablish a relation between treatment time/thickness wall (that defines the resistance of chemical attack). This enabled the determination of the SnO2 crucible resistance to corrosion, under the flux condition. The second part of this work involved the Y123 single crystal growth. After produced, they were analysed by x-ray diffraction and SEM with microanalysis in cross sections of the crucibles to observe the BaSnO3 interface. It was observed that single crystals were not contaminated by tin, and they were analyzed through measuring magnetization vs. Temperature. The single crystal showed a critical temperature (Tc) around 90,5K with a transition width (Tc) around 19,5K before treatment with an oxygen flux at 450°C. After seven days of a second treatment under the same conditions, the Tc was increased to 92K with a decreasing to 4,5K in Tc. The results showed that SnO2 vials are resistant to BaO-CuO flux and appropriate to single crystal growth in YBa2Cu3O7-ȣ superconductors without external. / O método do fluxo tem se tornado uma das técnicas mais usadas, quando se trata de crescimento de monocristais supercondutores de YBa2Cu3O7-ȣ. A técnica processa o material no estado fundido e isto acarreta temperaturas nas quais reações podem acontecer. Na preparação de monocristais supercondutores da família Y-Ba-Cu-O, mais especificamente, YBa2Cu3O7-ȣ, é preciso de tempos prolongados para fundir o material nas temperaturas de crescimento, em algum recipiente (cadinho) que os tenha. Este cadinho deve ser resistente, ao ponto de conter o fundido (fluxo) a altas temperaturas e resistir a possíveis ataques químicos do próprio fluxo com o cadinho. Porém qual material suportaria a agressividade de um fluxo rico em BaO-CuO. Somente poderia ser um cadinho inerte ou pouco reativo às condições do fluxo em questão. São utilizados vários tipos de cadinhos para o crescimento dos monocristais de YBa2Cu3O7-ä (Y123, como também é conhecido este material). Alguns metais nobres, como a platina e o ouro; óxidos, como a alumina, o óxido de zircônio e outros, são atacados, corroídos, quando utilizados no processamento de materiais supercondutores. Trabalhos mais recentes demonstraram que cadinhos de zircônia-ítria são resistentes ao ataque do fluxo. Poucos autores utilizaram cadinhos de óxido de estanho para o crescimento de supercondutores de Y123, porém este tipo de cadinhos apresentaram problemas de densificação. Recentemente observou-se que o óxido de estanho (SnO2) pode densificar sem a formação de fase líquida (ponto suscetível ao ataque do fluxo rico em BaO-CuO). Esse material, o SnO2, densificou acima de 99,7% da densidade teórica quando sinterizado acima de 1300ºC. Foi, efetivamente, o escolhido para a fabricação de cadinhos por colagem de barbotina e para produzir monocristais supercondutores de YBa2Cu3O7-ȣ com baixa ou nenhuma contaminação do fluxo e dos monocristais. vi Numa primeira etapa do trabalho, demonstrou-se que o cadinho de SnO2 resiste à corrosão do fluxo com excesso de bário e cobre. Houve a formação de uma interface entre a parede do cadinho e o fluxo, identificada como "camada protetora" de estanato de bário (BaSnO3), após tratamento térmico a 1025ºC por 4, 17 e 24 horas. Acredita-se que esta fase formou-se pela reação entre o BaO e o SnO2. A espessura dessa camada aumentou com o incremento do tempo do tratamento (até 24 horas). Isto permitiu definir a resistência à corrosão do cadinho de SnO2, perante as condições agressivas do próprio fluxo. Procedeu-se, então, ao crescimento dos monocristais de Y123, segunda etapa desta dissertação. A preparação dos monocristais foi descrita, técnicas de análises por difração de raios-X (DRX) e microscopia eletrônica de varredura (MEV) com microanálises foram feitas em seções transversais dos cadinhos, para melhor detalhar o ocorrido com a interface de BaSnO3, formada entre o cadinho e o fluxo. Pôde-se avaliar a não contaminação dos monocristais pelo estanho e analisá-los a partir de medidas de magnetização vs. temperatura. O monocristal apresentou uma temperatura crítica (Tc) em torno de 90,5K com uma largura de transição (Tc) de, aproximadamente, 19,5K, antes de ser tratado com fluxo de oxigênio a 450ºC. Após 7 dias no tratamento, a Tc sofreu um aumento para 92K com um decréscimo da Tc para 4,5K. Os resultados demonstraram que os cadinhos de SnO2 são resistentes à corrosão do fluxo rico em BaO-CuO e apropriados para o crescimento de monocristais supercondutores de YBa2Cu3O7-ȣ sem impurezas advindas do próprio cadinho.

Page generated in 0.0161 seconds