• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling and simulation of operational forest planning in relation to road network layout, cable corridor layout and timber transportation / 路網配置, 架線配置, 原木輸送に関連する森林作業計画のモデル化とシミュレーション

Shirasawa, Hiroaki 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第18321号 / 農博第2046号 / 新制||農||1021(附属図書館) / 学位論文||H26||N4828(農学部図書室) / 31179 / 京都大学大学院農学研究科森林科学専攻 / (主査)教授 吉岡 崇仁, 教授 德地 直子, 准教授 長谷川 尚史 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
2

Improving Helicopter Yarding with Onboard GPS

Horcher, Andy 29 April 2008 (has links)
Despite its relatively high cost, helicopter yarding has become a common means of timber extraction where site sensitivity, access, or regulations limit the use of less costly alternatives. The high costs associated with helicopter yarding, as well as the desire to expand the application of this system to extract lower value timber, increases the need for innovation to improve the operations. The cost or benefit of a particular harvest prescription or innovative technique is commonly assessed with a time and motion study. Capturing time study data require additional personnel or an imposition on the operator to record additional information. Onboard GPS can reduce or eliminate the need for additional personnel and/or operator input providing a rapid means of assessing and improving helicopter operations. This research employed onboard GPS in helicopter yarding to assess the potential of developing time studies using GPS data. Three helicopter models were sampled on a total of nine sites. Three of the sites have both experienced and inexperienced pilot data. Hemispherical canopy images were sampled at three sites. This complement of data permitted the following analysis: assessment of differences between experienced and inexperienced pilots, assessment of canopy cover on hook time, and the development of production models. The results indicate onboard GPS and the automated processing methods are suitable for creating time study data. Specifically, in all three case studies quantitative results were obtained, analyzed and opportunities for improvement identified. The time penalty suffered from using inexperienced pilots created 64 to 94% additional turn time. Increasing canopy cover correlated with increased hook time at two sites for the zenith angle segment 0 – 15°. Regressions assessing production show distance, slope, and choker delivery to be significant. This research shows the combination of onboard GPS, the automation process, and commonly collected turn information presents a number of opportunities, enabling the assessment of a wide range of helicopter yarding conditions. / Ph. D.
3

Improving Cable Logging Operations for New Zealand’s Steep Terrain Forest Plantations

Harrill, Hunter January 2014 (has links)
Cable logging will become more important as harvesting shifts to greater annual proportions on steep terrain in New Zealand. The costs of cable logging are considerably higher than that of conventional ground-based methods. Improving cost-effectiveness has been identified as key to ensuring the forestry industry remains cost competitive in the international market. This thesis focuses on ways to better understand and improve cable logging methods by specifically focusing on rigging configurations. The investigation was conducted through a comprehensive literature review, an industry survey to establish current use and preferences, a Delphi survey with experts to establish actual advantages and disadvantages, scale model testing to establish some fundamental knowledge of tension to deflection relationship, and finally a series of targeted case studies to establish both productivity and skyline tension in actual operations. Each of these aspects of the research topic employed different methodology. The literature review highlighted the most relevant research relating to cable logging world-wide spanning nearly a century. Various research papers, manuals, books and computer software were summarized. While many aspects of cable yarding operations have been investigated, much of it focusing on various aspects of operational efficiency through case studies, there is very limited information with regard to rigging configurations. The survey of 50 cable logging practitioners determined what rigging configurations were commonly used in New Zealand. It includes their perceived advantages and disadvantages for varying levels of deflection, but also for specific scenarios such as pulling away from native forest boundaries and flying logs over a stream. Results showed that there were many conflicting perceptions about rigging configuration options. Using an expert panel, a Delphi process was used to derive consensus on what advantages were truly unique to each configuration. This allowed the longer lists of perceived advantages from the industry survey to be pared down to a concise list of ad/disadvantages that will be used in the updating of the Best Practice Guidelines for Cable Logging. To increase our fundamental understanding of tension / payload / deflection relationships, an experiment was conducted in a controlled environment. Using a model yarder in a lab and continuous tension and video recording devices, the dynamic skyline behavior of three similar configurations were tested: North Bend, South Bend and Block in the Bight. The tensions were compared by use of a two-way analysis of variance, which indicated configuration and choker length were significant variables in some but not all of the dynamic load tests. Results also showed that some configurations performed better than others in minimizing the shock loads due to dropping into full suspension, impact with ground objects, and breakout during bridling. Finally, a series of eight studies were conducted on targeted logging operations where relevant stand and terrain parameters were related to the continuous skyline tension monitoring, and recording of productivity through time study. The three targeted configurations included (1) North Bend, (2) Standing skyline using a motorized slack-pulling carriage and (3) a live skyline using a motorized grapple carriage. Results showed that peak and average tensions, as well as amplification factors and the payload to tension relationship, varied between configurations. The study also showed that tensions could be collected to compute measures of payload and tension efficiency, which provided insight into operational performance. The safe working load was exceeded in 53% of all cycles studied and across seven of eight study sites and 14 of 16 spans. Cycle times were significantly different between rigging configurations and that production information could be used to compute measures of labor and energy consumption as well as payload and tension efficiency; which also provide insight into operational performance. The industry should give serious consideration to the use of tension monitors. Tension monitors have many benefits and have the potential to improve cable logging operations in New Zealand. Monitoring tensions can help one learn new techniques or methods (i.e. rigging configurations), help improve payload analysis software for future planning and help evaluate new technology and machinery.

Page generated in 0.0631 seconds