• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Epidemiological studies of Yersinia enterocolitica in South Australia /

Ormerod, Stephen. Unknown Date (has links)
Thesis (MAppSc)--University of South Australia, 1996
2

Comparison between standard in vitro virulence associated assays and human coproantibody siga production as predictors of Yersinia enterocolitica and Yersinia enterocolitica-like organism associated mouse virulence and human disease presentation

Fletcher, Kathleen Margaret January 1987 (has links)
A semi-quantitative indirect immunofluorescence assay was developed which distinguishes two types of patients from whom yersiniae are recovered: those who produce a strong yersiniae specific coproantibody secretory IgA (SIgA) response and those who do not. This SIgA response appeared to be yersiniae specific as faecal supernatant controls from patients whose stools where shown to yield negative or positive cultures for Salmonella, Campylobacter, or Clostridia were SIgA negative. Organisms isolated from patients with high SIgA titers had a higher incidence of virulence associated characteristics although SIgA response was not associated with most other commonly recognized assays of virulence. A strong association was shown to exist between SIgA titre and mouse virulence, the gold standard of bacterial virulence. Clinical examination of patients culture positive with yersiniae documented a strong association between acute enteric illness and high SIgA titre. This association was not dependant on the cultured yersiniae species. No single in vitro virulence associated assay was found to be a reliable predictor of animal virulence. The virulence of nine Y.frederiksenii and one Y.kristensenii, previously thought to be non-pathogenic in man, was also documented. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
3

Caspase-8 and RIP Kinases Regulate Bacteria-Induced Innate Immune Responses and Cell Death: A Dissertation

Weng, Dan 07 July 2014 (has links)
Yersinia pestis (Y. pestis), as the causative agent of plague, has caused deaths estimated to more than 200 million people in three historical plague pandemics, including the infamous Black Death in medieval Europe. Although infection with Yersinia pestis can mostly be limited by antibiotics and only 2000-5000 cases are observed worldwide each year, this bacterium is still a concern for bioterrorism and recognized as a category A select agent by the Centers for Disease Control and Prevention (CDC). The investigation into the host-pathogen interactions during Y. pestis infection is important to advance and broaden our knowledge about plague pathogenesis for the development of better vaccines and treatments. Y. pestis is an expert at evading innate immune surveillance through multiple strategies, several mediated by its type three secretion system (T3SS). It is known that the bacterium induces rapid and robust cell death in host macrophages and dendritic cells. Although the T3SS effector YopJ has been determined to be the factor inducing cytotoxicity, the specific host cellular pathways which are targeted by YopJ and responsible for cell death remain poorly defined. This thesis research has established the critical roles of caspase-8 and RIP kinases in Y. pestis-induced macrophage cell death. Y. pestis-induced cytotoxicity is completely inhibited in RIP1-/- or RIP3-/-caspase-8-/- macrophages or by specific chemical inhibitors. Strikingly, this work also indicates that macrophages deficient in either RIP1, or caspase-8 and RIP3, have significantly reduced infection-induced production of IL-1β, IL-18, TNFα and IL-6 cytokines; impaired activation of NF-κB signaling pathway and greatly compromised caspase-1 processing; all of which are critical for innate immune responses and contribute to fight against pathogen infection. Y. pestis infection causes severe and often rapid fatal disease before the development of adaptive immunity to the V bacterium, thus the innate immune responses are critical to control Y. pestis infection. Our group has previously established the important roles of key molecules of the innate immune system: TLR4, MyD88, NLRP12, NLRP3, IL-18 and IL-1β, in host responses against Y. pestis and attenuated strains. Yersinia has proven to be a good model for evaluating the innate immune responses during bacterial infection. Using this model, the role of caspase-8 and RIP3 in counteracting bacterial infection has been determined in this thesis work. Mice deficient in caspase-8 and RIP3 are very susceptible to Y. pestis infection and display reduced levels of pro-inflammatory cytokines in spleen and serum, and decreased myeloid cell death. Thus, both in vitro and in vivo results indicate that caspase-8 and RIP kinases are key regulators of macrophage cell death, NF-κB and caspase-1 activation in Yersinia infection. This thesis work defines novel roles for caspase-8 and RIP kinases as the central components in innate immune responses against Y. pestis infection, and provides further insights to the host-pathogen interaction during bacterial challenge.

Page generated in 0.0785 seconds