Spelling suggestions: "subject:"gig"" "subject:"iig""
21 |
Contribution à la réalisation d'une micro-inductance planaireAllassem, Désiré 26 November 2010 (has links) (PDF)
Les récents progrès dans les télécommunications exigent de nouveaux composants pouvant fonctionner à des fréquences de plus en plus élevées et l'électronique d'une manière générale exige des composants de très bonne qualité. L'objectif principal de ce travail est la conception, la réalisation et la caractérisation d'une micro-inductance intégrée utilisant les propriétés d'une couche relativement épaisse de matériau magnétique. Les structures bobinées étant difficilement intégrables, une structure planaire a été retenue. Deux types de dispositifs ont été réalisés : une structure composée d'une spirale sur une couche de matériau magnétique et une autre constituée d'une spirale prise en sandwich entre deux couches de matériau magnétique. Les études réalisées par simulation montrent de très bons résultats confirmés par les caractérisations. Plusieurs essais de caractérisation hautes fréquences (à l'aide d'un analyseur vectoriel) et basses fréquences (à l'aide d'un LCRmètre) ont été réalisés. Les résultats montrent un gain en termes de valeur d'inductance d'un facteur de deux sur la structure une couche et un gain d'un facteur proche de la perméabilité du matériau pour une structure double couche. Par ailleurs, une technique de caractérisation "courant fort" utilisant un té de polarisation et une technique de détermination de la perméabilité du matériau magnétique utilisant la combinaison des résultats de mesure et de simulation ont été développées. L'intégration des composants passifs comme l'inductance à couche magnétique relativement épaisse est possible grâce à l'utilisation des techniques de la microélectronique et de micro-usinage
|
22 |
Patterning and Characterization of Ferrimagnets for Coherent MagnonicsFranson, Andrew J. January 2020 (has links)
No description available.
|
23 |
Advancements in Spin Wave Devices for Next-Generation Radio Frequency TechnologyYiyang Feng (16626270) 25 July 2023 (has links)
<p>The ferrimagnetic electrical insulator yttrium iron garnet (YIG) has been proved a promising magnonic platform that allows for a variety of application within microwave fre- quency range. This dissertation focuses on the development of novel spin wave resonators and filters for next-generation radio frequency technology.</p>
<p>Chapter 1 begins with an introduction to modern radio frequency communication tech- nology and motivation of our research on novel radio frequency devices.</p>
<p>Chapter 2 discusses about the properties of yttrium iron garnet (YIG) thin film platform and theory of magnetostatic waves (MSW) within the magnetic thin film system. Three different types of magnetostatic wave modes, known as magnetostatic forward volume wave (MSFVW), magnetostatic backward volume waves (MSBVW) and magnetostatic surface wave (MSSW), are illustrated in this section. They have very distinct dispersion relations and require different transduction technology, which leads to disparate designs for devices utilizing different modes. The damping mechanism and linewidth of the magnetostatic modes will also be discussed in this chapter.</p>
<p>Chapter 3 will showcase a new YIG-on-Si platform created using novel YIG bonding technology and the first ever on-chip MSFVW hairpin resonator on the YIG-on-Si platform. In the first part, we would like to show finite element analysis of YIG-on-Si MSFVW hairpin resonator and prove the capability of the hairpin transducer incorporated with YIG thin film to yield lower self-inductance and stronger excitation field. These unique properties are beneficial for generating high coupling between magnon and microwave domains. In the following sections, the bonding technology essential for creation of YIG-on-Si platform and key fabrication technology of hairpin devices are explained in detailed. With well defined fabrication process established, we will demonstrate that the hairpin magnetostatic wave resonator obtained through the process is magnetically tunable with a high coupling efficiency over 50%. An out-of-plane Z-directional tunable magnetic field results in forward volume spin-wave resonance with frequency in the 5G band. This technology enables us to build on-chip devices of desirable high coupling and magnetic tuning on the new YIG-on-Insulator platform and provides possibility of magnetic tuning and band-pass filter at radio-frequency range.</p>
<p>Chapter 4 demonstrates a planar monolithic yttrium iron garnet (YIG) Chebyshev bandstop filter on traditional gadolinium gallium garnet (GGG) substrate with tunable frequency, low insertion loss and high rejection. This filter is created in YIG micro-machining technol- ogy that allows direct placement of metal transducers on YIG for strong spin-wave coupling. With an out-of-plane 3900 Oe bias field, the bandstop filter exhibits 55 dB maximum stop- band rejection at a center frequency of 6 GHz, with 2 dB passband insertion loss and 37.8 dBm passband <strong>IIP3</strong>. By applying different bias fields, the stopband center frequency is tuned from 4 GHz to 8 GHz while maintaining more than 30 dB rejection. Incorporated with proper design of tunable compact electromagnet, this new filter design can provide attenuation of spurs appearing across the 5G and X-band spectrum.</p>
<p>In chapter 5, we will explore the properties of YIG thin-film materials in depth. Both YIG-on-Si and YIG-on-GGG platform under different conditions will be examined. Results of X-ray diffraction (XRD), ferromagnetic resonance (FMR), scanning tunneling microscope (STM) on the YIG thin films will be presented. Those results will cast light onto the study of limiting factors of our YIG-on-Si and YIG-on-GGG devices.</p>
|
24 |
Study of Heavy Metal/Ferromagnetic Films Using Electrical Detection and Local Ferromagnetic Resonance Force MicroscopyWhite, Shane Paul, White 26 July 2018 (has links)
No description available.
|
25 |
Détection mécanique de la résonance ferromagnétiqueCharbois, Vincent 01 December 2003 (has links) (PDF)
Cette thèse concerne l'étude d'un nouvel outil expérimental d'investigation de la dynamique de l'aimantation, adapté à la mesure de nanostructures magnétiques. Cette technique, la Microscopie par Résonance Ferromagnétique (f-MRFM), s'inspire des microscopies à sonde locale pour réaliser une détection mécanique de la Résonance Ferromagnétique (RFM). Un dispositif original a été mis au point. Ses performances sont caractérisées par l'étude d'un disque de grenat magnétique de 160 microm. de diamètre. Les résultats démontrent une sensibilité et une résolution spectrale adaptées à la mesure d'échantillons microscopiques individuels, et permettent de conclure quant à la configuration la plus judicieuse en terme d'intensité du signal ou de résolution spatiale pour l'imagerie des excitations magnétiques. Cette technique permet en outre de remonter à une information quantitative sur la RFM, capacité qui est utilisée pour obtenir une mesure directe du temps de relaxation longitudinal T1.
|
Page generated in 0.0408 seconds