• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SPINTRONIC DEVICES FROM CONVENTIONAL AND EMERGING 2D MATERIALS FOR PROBABILISTIC COMPUTING

Vaibhav R Ostwal (9751070) 14 December 2020 (has links)
<p>Novel computational paradigms based on non-von Neumann architectures are being extensively explored for modern data-intensive applications and big-data problems. One direction in this context is to harness the intrinsic physics of spintronics devices for the implementation of nanoscale and low-power building blocks of such emerging computational systems. For example, a Probabilistic Spin Logic (PSL) that consists of networks of p-bits has been proposed for neuromorphic computing, Bayesian networks, and for solving optimization problems. In my work, I will discuss two types of device-components required for PSL: (i) p-bits mimicking binary stochastic neurons (BSN) and (ii) compound synapses for implementing weighted interconnects between p-bits. Furthermore, I will also show how the integration of recently discovered van der Waals ferromagnets in spintronics devices can reduce the current densities required by orders of magnitude, paving the way for future low-power spintronics devices.</p> <p>First, a spin-device with input-output isolation and stable magnets capable of generating tunable random numbers, similar to a BSN, was demonstrated. In this device, spin-orbit torque pulses are used to initialize a nano-magnet with perpendicular magnetic anisotropy (PMA) along its hard axis. After removal of each pulse, the nano-magnet can relax back to either of its two stable states, generating a stream of binary random numbers. By applying a small Oersted field using the input terminal of the device, the probability of obtaining 0 or 1 in binary random numbers (P) can be tuned electrically. Furthermore, our work shows that in the case when two stochastic devices are connected in series, “P” of the second device is a function of “P” of the first p-bit and the weight of the interconnection between them. Such control over correlated probabilities of stochastic devices using interconnecting weights is the working principle of PSL.</p> <p>Next my work focused on compact and energy efficient implementations of p-bits and interconnecting weights using modified spin-devices. It was shown that unstable in-plane magnetic tunneling junctions (MTJs), i.e. MTJs with a low energy barrier, naturally fluctuate between two states (parallel and anti-parallel) without any external excitation, in this way generating binary random numbers. Furthermore, spin-orbit torque of tantalum is used to control the time spent by the in-plane MTJ in either of its two states i.e. “P” of the device. In this device, the READ and WRITE paths are separated since the MTJ state is read by passing a current through the MTJ (READ path) while “P” is controlled by passing a current through the tantalum bar (WRITE path). Hence, a BSN/p-bit is implemented without energy-consuming hard axis initialization of the magnet and Oersted fields. Next, probabilistic switching of stable magnets was utilized to implement a novel compound synapse, which can be used for weighted interconnects between p-bits. In this experiment, an ensemble of nano-magnets was subjected to spin-orbit torque pulses such that each nano-magnet has a finite probability of switching. Hence, when a series of pulses are applied, the total magnetization of the ensemble gradually increases with the number of pulses</p> <p>applied similar to the potentiation and depression curves of synapses. Furthermore, it was shown that a modified pulse scheme can improve the linearity of the synaptic behavior, which is desired for neuromorphic computing. By implementing both neuronal and synaptic devices using simple nano-magnets, we have shown that PSL can be realized using a modified Magnetic Random Access Memory (MRAM) technology. Note that MRAM technology exists in many current foundries.</p> <p>To further reduce the current densities required for spin-torque devices, we have fabricated heterostructures consisting of a 2-dimensional semiconducting ferromagnet (Cr<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub>) and a metal with spin-orbit coupling metal (tantalum). Because of properties such as clean interfaces, perfect crystalline nanomagnet structure and sustained magnetic moments down to the mono-layer limit and low current shunting, 2D ferromagnets require orders of magnitude lower current densities for spin-orbit torque switching than conventional metallic ferromagnets such as CoFeB.</p>
2

Advancements in Spin Wave Devices for Next-Generation Radio Frequency Technology

Yiyang Feng (16626270) 25 July 2023 (has links)
<p>The ferrimagnetic electrical insulator yttrium iron garnet (YIG) has been proved a promising magnonic platform that allows for a variety of application within microwave fre- quency range. This dissertation focuses on the development of novel spin wave resonators and filters for next-generation radio frequency technology.</p> <p>Chapter 1 begins with an introduction to modern radio frequency communication tech- nology and motivation of our research on novel radio frequency devices.</p> <p>Chapter 2 discusses about the properties of yttrium iron garnet (YIG) thin film platform and theory of magnetostatic waves (MSW) within the magnetic thin film system. Three different types of magnetostatic wave modes, known as magnetostatic forward volume wave (MSFVW), magnetostatic backward volume waves (MSBVW) and magnetostatic surface wave (MSSW), are illustrated in this section. They have very distinct dispersion relations and require different transduction technology, which leads to disparate designs for devices utilizing different modes. The damping mechanism and linewidth of the magnetostatic modes will also be discussed in this chapter.</p> <p>Chapter 3 will showcase a new YIG-on-Si platform created using novel YIG bonding technology and the first ever on-chip MSFVW hairpin resonator on the YIG-on-Si platform. In the first part, we would like to show finite element analysis of YIG-on-Si MSFVW hairpin resonator and prove the capability of the hairpin transducer incorporated with YIG thin film to yield lower self-inductance and stronger excitation field. These unique properties are beneficial for generating high coupling between magnon and microwave domains. In the following sections, the bonding technology essential for creation of YIG-on-Si platform and key fabrication technology of hairpin devices are explained in detailed. With well defined fabrication process established, we will demonstrate that the hairpin magnetostatic wave resonator obtained through the process is magnetically tunable with a high coupling efficiency over 50%. An out-of-plane Z-directional tunable magnetic field results in forward volume spin-wave resonance with frequency in the 5G band. This technology enables us to build on-chip devices of desirable high coupling and magnetic tuning on the new YIG-on-Insulator platform and provides possibility of magnetic tuning and band-pass filter at radio-frequency range.</p> <p>Chapter 4 demonstrates a planar monolithic yttrium iron garnet (YIG) Chebyshev bandstop filter on traditional gadolinium gallium garnet (GGG) substrate with tunable frequency, low insertion loss and high rejection. This filter is created in YIG micro-machining technol- ogy that allows direct placement of metal transducers on YIG for strong spin-wave coupling. With an out-of-plane 3900 Oe bias field, the bandstop filter exhibits 55 dB maximum stop- band rejection at a center frequency of 6 GHz, with 2 dB passband insertion loss and 37.8 dBm passband <strong>IIP3</strong>. By applying different bias fields, the stopband center frequency is tuned from 4 GHz to 8 GHz while maintaining more than 30 dB rejection. Incorporated with proper design of tunable compact electromagnet, this new filter design can provide attenuation of spurs appearing across the 5G and X-band spectrum.</p> <p>In chapter 5, we will explore the properties of YIG thin-film materials in depth. Both YIG-on-Si and YIG-on-GGG platform under different conditions will be examined. Results of X-ray diffraction (XRD), ferromagnetic resonance (FMR), scanning tunneling microscope (STM) on the YIG thin films will be presented. Those results will cast light onto the study of limiting factors of our YIG-on-Si and YIG-on-GGG devices.</p>

Page generated in 0.1046 seconds