• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detection and localization of cough from audio samples for cough-based COVID-19 detection / Detektion och lokalisering av hosta från ljudprover för hostbaserad COVID-19-upptäckt

Krishnamurthy, Deepa January 2021 (has links)
Since February 2020, the world is in a COVID-19 pandemic [1]. Researchers around the globe are pitching in to develop a fast reliable, non-invasive testing methodology to solve this problem and one of the key directions of research is to utilize coughs and their corresponding vocal biomarkers for diagnosis of COVID-19. In this thesis, we propose a fast, real-time cough detection pipeline that can be used to detect and localize coughs from audio samples. The core of the pipeline utilizes the yolo-v3 model [2] from vision domain to localize coughs in the audio spectrograms by treating them as objects. This outcome is transformed to localize the boundaries of cough utterances in the input signal. The system to detect coughs from CoughVid dataset [3] is then evaluated. Furthermore, the pipeline is compared with other existing algorithms like tinyyolo-v3 to test for better localization and classification. Average precision(AP@0.5) of yolo-v3 and tinyyolo-v3 model are 0.67 and 0.78 respectively. Based on the AP values, tinyyolo-v3 performs better than yolo-v3 by atleast 10% and based on its computational advantage, its inference time was also found to be 2.4 times faster than yolo-v3 model in our experiments. This work is considered to be novel and significant in detection and localization of cough in an audio stream. In the end, the resulting cough events are used to extract MFCC features from it and classifiers were trained to predict whether a cough has COVID-19 or not. The performance of different classifiers were compared and it was observed that random forest outperformed other models with a precision of 83.04%. It can also be inferred from the results that the classifier looks promising, however, in future this model has to be trained using clinically approved dataset and tested for its reliability in using this model in a clinical setup. / Sedan februari 2020 är världen inne i en COVID-19-pandemi [1]. Forskare runt om i världen satsar på att utveckla en snabb tillförlitlig, icke-invasiv testmetodik för att lösa detta problem och en av de viktigaste forskningsriktningarna är att använda hosta och deras motsvarande vokala biomarkörer för diagnos av COVID-19. I denna avhandling föreslår vi en snabb pipeline för hostdetektering i realtid som kan användas för att upptäcka och lokalisera hosta från ljudprover. Kärnan i rörledningen använder yolo-v3-modellen [2] från syndomänen för att lokalisera hosta i ljudspektrogrammen genom att behandla dem som objekt. Detta resultat transformeras för att lokalisera gränserna för hosta yttranden i insignalen. Systemet för att upptäcka hosta från CoughVid dataset [3] utvärderas sedan. Dessutom jämförs rörledningen med andra befintliga algoritmer som tinyyolo-v3 för att testa för bättre lokalisering och klassificering. Genomsnittlig precision (AP@0.5) för modellen yolo-v3 och tinyyolo-v3 är 0,67 respektive 0,78. Baserat på AP-värdena fungerar tinyyolo-v3 bättre än yolo-v3 med minst 10% och baserat på dess beräkningsfördel befanns dess inferenstid också vara 2,4 gånger snabbare än yolo-v3- modellen i våra experiment. Detta arbete anses vara nytt och viktigt för att upptäcka och lokalisera hosta i en ljudström. I slutändan används de resulterande hosthändel-serna för att extrahera MFCC-funktioner från det och klassificerare utbildades för att förutsäga om en hosta har COVID-19 eller inte. Prestanda för olika klassificerare jämfördes och det observerades att slumpmässig skog överträffade andra modeller med en precision på 83.04%. Av resultaten kan man också dra slutsatsen att klassificeraren ser lovande ut, men i framtiden måste denna modell utbildas med hjälp av kliniskt godkänd dataset och testas med avseende på dess tillförlitlighet vid användning av denna modell i ett kliniskt upplägg.

Page generated in 0.0873 seconds