• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of the Association of mRNA Export Factor Yra1 with the C-terminal Domain of RNA Polymerase II in vivo and in vitro

MacKellar, April January 2011 (has links)
<p>The unique C-terminal domain (CTD) of RNA polymerase II (RNAPII), composed of tandem heptad repeats of the consensus sequence YSPTSPS, is subject to differential phosphorylation throughout the transcription cycle. Several RNA processing factors have been shown to bind the appropriately phosphorylated CTD, and this facilitates their localization to nascent pre-mRNA during transcription. In <italic>Saccharomyces cerevisiae</italic>, the mRNA export protein Yra1 (ALY/REF in metazoa) has been shown to cotranscriptionally associate with mRNA and is thought to deliver it to the nuclear pore complex for export to the cytoplasm. Based on a previous proteomics screen, I hypothesized that Yra1 is a <italic>bona fide</italic> phosphoCTD associated protein (PCAP) and that this interaction is responsible for the pattern of Yra1 cotranscriptional association observed <italic>in vivo</italic>. Using <italic>in vitro</italic> binding assays, I show that Yra1 directly binds the hyperphosphorylated form of the CTD characteristic of elongating RNAPII. Using truncations of Yra1, I determined that its phosphoCTD-interacting domain (PCID) resides in the segment comprising amino acids 18-184, which, interestingly, also contains the RNA Recognition Motif (RRM) (residues 77-184). Using UV crosslinking, I found that the RRM alone can bind RNA, although a larger protein segment, extending to the C-terminus (aa 77-226), displays stronger RNA binding activity. Even though the RRM is implicated in both RNA and CTD binding, certain RRM point mutations separate these two functions: thus, mutations that produce defects in RNA binding do not affect CTD binding. Both functions are important <italic>in vivo</italic>, in that RNA binding-defective or CTD binding-defective versions of Yra1 engender growth and mRNA export defects. I also report the construction and characterization of a useful new temperature sensitive <italic>YRA1</italic> allele (<italic>R107AF126A</italic>). Finally, using chromatin immunoprecipitation, I demonstrate that removing the N-terminal 76 amino acids of Yra1 (all of the PCID up to the RRM) results in a 10-fold decrease in Yra1 recruitment to genes during elongation. These results indicate that the PCTD is likely involved directly in cotranscriptional recruitment of Yra1 to active genes.</p> / Dissertation
2

Etude de la régulation du métabolisme des ARN messagers chez la levure Saccharomyces cerevisiae / Study of the regulation of messenger RNA metabolism in the yeast Saccharomyces cerevisiae

Bretes Rodrigues, Hugo 25 September 2012 (has links)
Au cours de la transcription, plusieurs facteurs sont assemblés sur les ARN messagers pour former des Ribonucléoparticules de messagers (mRNPs), et contrôler leur maturation, leur stabilité et leur devenir dans le cytoplasme. Afin d’assurer la production de protéines fonctionnelles, la cellule dispose de plusieurs mécanismes de régulation et de contrôle de qualité assurant la fidélité de l’information génétique transmise au niveau ARN messager et protéine.Chez la levure Saccharomyces cerevisiae, un ensemble de protéines associées au pore nucléaire, incluant la SUMO protéase Ulp1, a été impliqué dans un contrôle de qualité des mRNPs régulant leur export vers le cytoplasme. Ces données suggéraient que l’export des ARN messagers pourrait être contrôlé par la modification post-traductionnelle par le polypeptide SUMO d’un ou de plusieurs effecteurs au sein des mRNPs. Afin de mieux comprendre ces processus, nous avons combiné plusieurs approches visant à identifier ces protéines SUMOylées. En particulier, nous avons mis en place un crible protéomique visant à identifier les protéines dont l’association sur les mRNPs dépend d’Ulp1. Ce crible nous a permis de mettre en évidence une régulation par Ulp1 de l’assemblage du complexe THO sur les ARN messagers. Ce complexe, recruté sur les gènes et les mRNPs, est connu pour contribuer à l’efficacité de la transcription, prévenir l’instabilité génétique liée à la formation d’hybrides ADN matrice – ARN messager (dénommés R-loops) et permettre l’export des mRNPs. En combinant l’analyse biochimique de différentes catégories de mRNPs à des expériences d’immunoprécipitation de l’ARN, nous avons montré que l’activité de la SUMO-protéase Ulp1 est nécessaire à l’association du complexe THO sur différents ARN messagers. De plus, nous avons montré que le complexe THO est SUMOylé sur le domaine C-terminal de sa sous-unité Hpr1, et que Ulp1 régule cette modification. Enfin, cet événement de SUMOylation du complexe THO régule son association avec les mRNPs. L’analyse fonctionnelle de mutants affectant la SUMOylation du complexe THO révèle que des défauts de SUMOylation de ce complexe compromettent ses fonctions dans la transcription sans affecter l’export. De manière intéressante, nous avons observé que la présence d’un intron sur des rapporteurs LacZ diminue la sensibilité de leur expression à des inactivations ou des défauts de SUMOylation du complexe THO. Ce phénotype entraine une augmentation relative des niveaux d’ARN pré-messagers dans ces mutants, un phénomène rendant compte de la fuite cytoplasmique apparente d’ARN non épissés précédemment observée dans le mutant ulp1. L’ensemble de ces données caractérise pour la première fois un rôle de la SUMOylation dans le contrôle de l’assemblage et du devenir cellulaire des mRNPs. / During transcription, several factors associate with mRNA to form messenger Ribonucleoparticles (mRNPs), thereby controlling their processing, their stability, and their cytoplasmic fate. To ensure the production of functional proteins from these mRNAs, eukaryotic cells contain numerous regulatory and quality control systems in order to prevent aberrant mRNP accumulation and export.In the yeast Saccharomyces cerevisiae, several nuclear pore associated proteins, including the SUMO isopeptidase Ulp1, have been involved in a mRNP quality control regulating their nuclear export. These data suggested that post-translational modification by SUMO of one or several mRNP components could regulate mRNA export. In order to understand the molecular mechanisms underlying this process, we undertook several approaches to identify these SUMOylated factors. In particular, we have set up a proteomic screen to identify mRNP components whose assembly onto mRNPs depends on Ulp1 activity.This proteomic survey revealed an Ulp1-dependent regulation of THO complex assembly to mRNPs. This complex, recruited to transcribed genes and mRNPs, is known to regulate transcription elongation by preventing DNA-RNA hybrids formation (termed R-loops), and mRNP export. Through a combination of proteomic analysis of mRNPs assembled in Ulp1 mutant cells, with RNA / chromatin immunoprecipitation experiments, we demonstrate that Ulp1 controls specifically the recruitment of the THO complex within mRNPs. SUMOylation analysis further reveals that Ulp1 targets the THO complex subunit Hpr1 on its C-terminal domain for deSUMOylation. We further show that this SUMOylation event regulates THO complex association within mRNPs. Finally, functional analysis reveal that impaired deSUMOylation of the THO complex do not affect mRNP export, but disturbs expression of LacZ reporter genes, a phenotype classically associated with THO complex dysfunction. Intriguingly, the transcriptional effect of inactivation or impaired deSUMOylation of the THO complex on LacZ expression is alleviated by the presence of an intron, providing a molecular basis for previously reported pre-mRNA leakage phenotypes. Our data therefore unravels for the first time a function of SUMO in the control of mRNP assembly contributing to proper mRNP homeostasis.

Page generated in 0.0412 seconds