• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sensibilité à la douleur, fonction olfactive et plasticité cérébrale chez un modèle murin de cécité congénitale

Touj, Sara January 2020 (has links) (PDF)
No description available.
2

Sensibilité à la douleur, fonction olfactive et plasticité cérébrale chez un modèle murin de cécité congénitale

Touj, Sarra 02 1900 (has links)
La cécité précoce induit des changements comportementaux souvent accompagnés par des changements fonctionnels et neuroanatomiques au niveau du cerveau. Alors que les modifications dans les modalités tactiles et auditives ont été largement étudiées, les changements touchant l’olfaction et la douleur chez les aveugles sont restés moins explorés. Chez l’humain aveugle précoce, certaines études ont rapporté une amélioration de la fonction olfactive alors que d’autres n’ont pas réussi à démontrer de tels effets. Chez l’humain, des études récentes ont mis en évidence une hypersensibilité à la douleur aiguë chez les aveugles précoces. Cependant, les mécanismes sous-jacents sont restés inconnus. Afin d’étudier les changements olfactifs et nociceptifs induits par la cécité précoce ainsi que la plasticité fonctionnelle et neuroanatomique qui les accompagne, nous avons développé un modèle de souris de cécité précoce appelé ZRDBA. Dans cette souche, en croisant un parent homozygote pour le gène Rax/Rx (gène responsable de l’anophtalmie) avec un parent hétérozygote, dans une même portée la moitié des souris naissent anophtalmes alors que l’autre moitié a une vue normale. Cette souche nous permet d’examiner les modifications comportementales et cérébrales induites par la cécité chez deux groupes de souris ayant la même base génétique. Le premier objectif de cette thèse était d’évaluer les changements comportementaux olfactifs induits par la cécité chez les souris ZRDBA et d’examiner si ces changements sont accompagnés de plasticité anatomique dans les régions cérébrales impliquées dans le traitement olfactif. Trois tests comportementaux ont été menés : le test de recherche de nourriture, le test du seuil olfactif et le test de performance olfactive. Les résultats ont révélé des meilleures performances olfactives chez les aveugles dans le test de recherche de nourriture ainsi que dans le test de performance olfactive, mais pas dans le test du seuil olfactif. Ces résultats indiquent une amélioration de la discrimination et identification des odeurs chez les souris aveugles. La plasticité cérébrale dans les structures olfactives a été examinée par des analyses histologiques et analyses IRM. Les résultats des mesures histologiques ont révélé une augmentation du volume des bulbes olfactifs, premier relais de traitement des informations olfactives, chez les souris aveugles. Les analyses IRM ont révélé une augmentation du volume dans les couches granulaires et glomérulaires des bulbes olfactifs ainsi que dans d’autres régions impliquées dans ii le traitement olfactif, notamment, le cortex orbitofrontal et le cortex piriforme. Ces résultats suggèrent que l’amélioration de la fonction olfactive chez les souris aveugles peut être expliquée par la plasticité anatomique mise en évidence dans les structures olfactives. Le deuxiéme objectif de cette thèse était d’évaluer la sensibilité à la douleur chez les souris aveugles ZRDBA. Quatre tests nociceptifs ont été réalisés : le test de formaline (sensibilité chimique), le test de Von Frey (sensibilité mécanique), le test d’acétone (sensibilité au froid) et le test de tail-flick dans l’eau (sensibilité au chaud). Les souris aveugles, lorsque comparées à leurs congénères voyantes, ont montré une hypersensibilité à la douleur dans tous les tests. Afin d’examiner les mécanismes sous-jacents de cette hypersensibilité, nous avons investigué par le biais d’analyses immunohistologiques la plasticité fonctionnelle et anatomique dans l’amygdale, structure clé pour la modulation et traitement de la douleur. Les résultats ont montré une augmentation de l’activité c-fos induite par l’injection de la formaline dans le noyau central de l’amygdale et dans toute l’amygdale chez les souris aveugles. Les analyses histologiques ont également montré une augmentation du volume de l’amygdale chez les souris aveugles. Ces résultats suggèrent la contribution de l’amygdale dans l’hypersensibilité à la douleur mise en évidence chez les souris aveugles. Finalement, dans la troisième partie de cette thèse, nous avons voulu investiguer l’impact de la cécité sur la plasticité dans l’ensemble du cerveau à l’aide d’analyses IRM et d’analyses histologiques. Les résultats de cette étude ont révélé une atrophie de la plupart des structures visuelles, notamment, le corps géniculé latéral, le cortex visuel primaire, le cortex visuel secondaire ainsi que les collicules supérieurs. En outre, les analyses histologiques ont révélé une atrophie de la couche IV dans le cortex visuel primaire et dans le cortex visuel secondaire ainsi qu’une atrophie des couches visuelles superficielles des collicules supérieurs chez les souris aveugles expliquant la réduction du volume observée dans ces régions. Dans les autres structures non visuelles, les analyses ont révélé une augmentation du volume dans l’amygdale, impliquée dans la douleur ainsi que dans plusieurs régions olfactives comme les bulbes olfactifs, le cortex piriforme et le cortex orbitofronal chez les souris aveugles. Ces résultats permettent de faire le parallèle avec les études réalisées chez l’humain et ouvrent la porte pour plus d’investigations des mécanismes sous-jacents de la plasticité cérébrale observée chez les aveugles. / Early blindness induces behavioral changes often accompanied by functional and neuroanatomical changes in the brain. While changes in tactile and hearing modalities have been largely investigated, changes in olfaction and pain in the blind remained less explored. While some studies reported an improvement in olfactory function in early blind humans, others failed to demonstrate such effects. In addition, recent studies evidenced hypersensitivity to acute pain in early blind humans. However, the underlying mechanisms remained unknown. In order to study changes induced by early blindness in olfactory function and as well as the underlying functional and neuroanatomical plasticity, we developed a mouse model of early blindness called ZRDBA. In the unique ZRDBA strain, half of the mice homozygous for the Rax / Rx gene (gene responsible for anophthalmia) are born anophthalmic while the other half heterozygous are born sighted. This ZRDBA mice allow investigation of the behavioral and cerebral changes impacts of early blindness without worrying about strain differences. The first aim of this thesis was to assess olfactory changes induced by blindness in ZRDBA mice and examine whether these changes are accompanied by anatomical plasticity in brain regions involved in olfactory processing. Three behavioral tests were conducted: the buried food test, the odor detection threshold test (sensitivity measure) and the olfactory performance test (three-odor discrimination measure). The results revealed better olfactory performance of blind mice the buried food test as well as in the olfactory performance test but not in the olfactory threshold test. These results indicate an improvement in olfactory discrimination and identification in blind mice. Brain plasticity in olfactory structures was examined by histological and MRI analyses. The results of the histological measurements revealed a larger volume of the olfactory bulbs, the first site for processing olfactory information, in blind mice. MRI analysis revealed a larger volume in the granular and glomerular layers of the olfactory bulbs as well as in other regions involved in olfactory processing, namely, the orbitofrontal cortex and the piriform cortex. These results suggest that plasticity in the olfactory structures may explain the improved olfactory function in blind mice. The second aim of this thesis was to assess pain sensitivity in the blind ZRDBA mice. Four nociceptive tests were carried out: the formalin test (chemical sensitivity), the Von Frey iv test (mechanical sensitivity), the acetone test (cold sensitivity) and the water tail-flick test (hot pain sensitivity). Blind mice showed hypersensitivity to pain in all tests. In order to examine the underlying mechanisms of this pain hypersensitivity, we investigated the functional and anatomical plasticity in the amygdala, a key structure for the modulation and treatment of pain using immunohistological analyses. The results revealed an increase of c-Fos activity induced by the injection of formalin in the central nucleus of the amygdala as well as the whole amygdaloid complex in blind mice. Histological measurement also revealed a larger volume of the amygdala in blind mice. These results suggest the contribution of the amygdala in pain hypersensitivity evidenced in blind mice. Finally, in the third part of this thesis, we wanted to investigate the impact of blindness on anatomical plasticity in the whole brain using MRI and histological analyses. The results of this study revealed atrophy of most of the visual structures, in particular, the lateral geniculate nucleus, the primary visual cortex, the secondary visual cortex as well as the superior colliculi. Moreover, histological analyses revealed an atrophy of layer IV of the primary visual cortex and the secondary visual cortex as well as atrophy of the superficial visual layers of the superior colliculus in blind mice explaining the volumetric reduction observed in these regions. In the non-visual structures, analyses revealed a larger volume in the amygdala, as well as in several olfactory structures such as the olfactory bulbs, the piriform cortex and the orbitofronal cortex in blind mice. These results clarify the impact of early blindness on brain plasticity and opens the door for further investigation of its underlying mechanisms.

Page generated in 0.0171 seconds