• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 161
  • 28
  • 15
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 1
  • 1
  • Tagged with
  • 210
  • 210
  • 35
  • 32
  • 26
  • 21
  • 19
  • 16
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Detection and transmission of Mycobacterium marinum and Mycobacterium chelonae in zebrafish (Danio rerio)

Peterson, Tracy Shawn 02 April 2015 (has links)
Mycobacteriosis is a common disease of laboratory zebrafish (Danio rerio). Different infection patterns occur in zebrafish depending on mycobacterial species. Mycobacterium marinum and M. haemophilum produce virulent infections associated with high mortality, whereas M. chelonae is more wide spread and not associated with high mortality. Identification of mycobacterial infections to the species level provides important information for making management decisions. Observation of acid-fast bacilli in histological sections or tissue imprints is the most common diagnostic method for mycobacteriosis in fish, but only allows for diagnosis to the genus level. Mycobacterial culture, followed by molecular or biochemical identification is the traditional approach for species identification, but recently it has been shown that DNA of diagnostic value can be retrieved from paraffin blocks. Type of fixative, time in fixative before processing, species of mycobacteria, and severity of infection were investigated as parameters to determine if the hsp gene PCR assay (primer set HS5F/hsp667R) could detect and amplify mycobacterial DNA from paraffin-embedded zebrafish. Whole zebrafish were experimentally infected with either M. chelonae or M. marinum, and then preserved in 10% neutral buffered formalin or Dietrich's fixative for 3, 7, 21 and 45 days. Subsequently, fish were evaluated by H&E and Fite's acid-fast stains to detect mycobacteria within granulomatous lesions. The PCR assay was quite effective, and obtained PCR product from 75% and 88% of the M. chelonae and M. marinum infected fish, respectively. Fixative type, time in fixative, and mycobacterial species showed no statistical relationship with the efficacy of the PCR test. Regarding natural transmission, zebrafish are capable of contracting mycobacterial infections by feeding on infected fish tissue, but other natural routes have not been clearly elucidated. Free living amoebae have been shown to be vectors for mycobacteria and their virulence is enhanced when residing in these protozoans. Paramecium caudatum are commonly used as a first food for zebrafish, and I investigated this ciliate's potential to serve as a vector of Mycobacterium marinum and M. chelonae. The ability of live P. caudatum to transmit these mycobacteria to larval, juvenile and adult zebrafish was evaluated. Infections were defined by histologic observation of granulomas containing acid-fast bacteria in extraintestinal locations. In both experiments, fish fed paramecia containing mycobacteria became infected at a higher incidence than controls. Larvae (exposed at 4 days post hatch) fed paramecia with M. marinum exhibited an incidence of 30% (24/80) and juveniles (exposed at 21 days post hatch) showed 31% incidence (14/45). Adult fish fed gelatin diets containing bacteria within paramecia or mycobacteria alone for 2 wk resulted in infections when examined 8 wk after exposure: M. marinum OSU 214; in paramecia 47% (21/45; 3.5 x 10⁵ dose/fish/day), M. marinum CH in paramecia 47% (9/19; 3.6 x 10⁵ dose/fish/day), M. chelonae in paramecia 38% (5/13; 3.5 x 10⁵ dose/fish/day). I investigated the ability of mycobacteria to persist within paramecia, as this has previously been demonstrated in amoebae. Gram negative bacteria ingested by paramecia were processed within an hour. In contrast, I determined using GFP-labeled Mycobacterium marinum that mycobacteria can persist within paramecia digestive vacuoles. The concentration of M. marinum at 1 hour was similar to that at the time of ingestion. Twenty-four hours post-ingestion and later there was significant decline in M. marinum concentrations compared to time of ingestion, but M. marinum continued to persist inside digestive vacuoles for up to one week. My results demonstrate for the first time that Paramecium caudatum can act as a vector for mycobacteria. This provides a useful animal model for evaluation of natural mycobacterial infections and demonstrates the possibility of mycobacterial transmission in zebrafish facilities via contaminated paramecia cultures. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from April 2, 2013 - April 2, 2015
162

Roles of activin paracrine system in the oocyte maturation of the zebrafish, Danio rerio. / CUHK electronic theses & dissertations collection / Digital dissertation consortium

January 2001 (has links)
Pang Yefei. / "August 2001." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 161-197). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
163

Expression control of zebrafish gonadotropin receptors in the ovary. / CUHK electronic theses & dissertations collection

January 2012 (has links)
卵泡刺激素(FSH)和促黃體激素(LH)是脊椎動物體內的促性腺激素(GTH)。它們通過其相應的GTH受體(GTHR)- FSH受體(FSHR)及LH/絨毛膜性腺激素受體(LHCGR),來調控雌性脊椎動物的主要性腺活動,如卵泡生成和類固醇生成。因此,GTHR的表達水平可控制卵泡細胞對於GTH的反應程度,從而影響脊椎動物的繁殖能力。 / 然而,跟哺乳動物中的資料相比,這些受體的表達調控機制在硬骨魚類中仍然很模糊。此前,我們已經證明了斑馬魚卵泡之fshr和lhcgr的表達譜差異,顯示出lhcgr的表達滯後於fshr的表達。此表達時間之差異引申出兩條有趣的問題:一)甚麼激素能分別調節fshr和lhcgr的表達? 二)這些調控的機制是甚麼?因此,我們發起本研究來解答這些問題。 / 利用培養出來的斑馬魚卵泡細胞,我們展示了雌二醇(E2)是一個有力的GTHR調控激素。雖然E2同時刺激了fshr和lhcgr的表達,但E2對於lhcgr的表達調控效力遠遠比對fshr的高。由於雌激素核受體(nER)的特異拮抗劑(ICI 182,780)能完全抵消E2的效果,表明了E2是通過傳統的nER來直接促進了lhcgr的表達。有趣的是,不能穿越細胞膜的雌二醇-牛血清白蛋白偶聯複合物(E2-BSA)能完全模仿E2的效果,因此我們的證據提出這些nER可能位於細胞膜上。此外,我們運用各種藥劑發現了多種信號分子跟E2調控GTHR的能力有關,包括cAMP、PKA、PI3K、PKC、MEK、MAPK及p38 MAPK。當中以cAMP-PKA的信號傳導最有可能在E2的雙相調控效果起了直接作用,而E2的行動也極依賴其他信號分子的允許作用。 / 除了E2,人絨毛膜促性腺激素(hCG; LH的類似物)、垂體腺苷酸環化酶激活多肽(PACAP)、表皮生長因子(EGF)和胰島素樣生長因子-I(IGF-I)也能有效地調節斑馬魚卵泡細胞的GTHR表達。hCG能大幅下調其受體lhcgr的表達,顯示hCG能令卵泡細胞對GTH脫敏。與此同時,PACAP能瞬時模仿hCG的行動,表明了PACAP很可能是hCG的瞬態下游信號。EGF是一個強烈抑制lhcgr表達的因子,而IGF-I是一個潛在的fshr表達增強因子,均說明了旁分泌因子對GTHR表達調控有關鍵作用。除了這些激素或因子的獨立調控作用,我們進一步發現了E2的效果可能會被它們覆蓋或調節。它們對nER的調控作用可能會造成這種現象。PACAP瞬時減少了esr2a及esr2b的表達量,而EGF則顯著地下調了esr2a。 / 作為第一個在硬骨魚卵巢中對GTHR調控的全面研究,它無疑豐富了我們對卵泡生成過程中GTH的功能及GTHR表達調控的認識。此外,我們成功將目前的研究平台應用於雙酚A(BPA)的研究,進一步展示了本研究平台的潛力,有助於我們未來對各種內分泌干擾物(EDC)的作用機制進行研究。 / Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are the gonadotropins (GTHs), which bind to their cognate GTH receptors (GTHRs), FSH receptor (FSHR) and LH/choriogonadotropin receptor (LHCGR), to mediate major gonadal events in female vertebrates, including folliculogenesis and steroidogenesis. The expression level of GTHRs, therefore, controls the responsiveness of follicle cells to GTHs and hence governs the vertebrate reproduction. / However, compared with the information in mammals, the expression control of these receptors in teleosts remains largely unknown. Previously, we have demonstrated the differential expression profiles of fshr and lhcgr in the zebrafish folliculogenesis, showing that lhcgr expression lags behind fshr expression. This temporal difference between fshr and lhcgr expression has raised two interesting questions: 1) What hormones regulate the differential expression of fshr and lhcgr? and 2) What are the control mechanisms of these regulations? The present study was initiated to answer these questions. / With the primary zebrafish follicle cell cultures, we demonstrated that estradiol (E2) was a potent differential regulator of GTHRs. Although E2 increased both fshr and lhcgr expression, the up-regulatory potency of E2 on lhcgr was much greater than that on fshr. E2 directly promoted lhcgr expression via classical nuclear estrogen receptors (nERs) since nER-specific antagonist (ICI 182,780) completely abolished the E2 effect. Interestingly, our evidence suggested that these nERs could be localized on the plasma membrane because the membrane-impermeable form of estrogen (E2-BSA) fully mimicked the actions of E2. Furthermore, by applying various pharmaceutical agents, we revealed the involvement of multiple signaling molecules, including cAMP, PKA, PI3K, PKC, MEK, MAPK and p38 MAPK. The cAMP-PKA pathway likely played a direct role in the biphasic actions of E2 while the E2 actions were also greatly dependent on the permissive actions of other signaling molecules. / Apart from the sex steroid E2, human chorionic gonadotropin (hCG; as a LH analogue), pituitary adenlyate cyclase-activating peptide (PACAP), epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) also significantly regulated GTHR expression in the zebrafish follicle cells. hCG drastically down-regulated its receptor, lhcgr, suggesting that hCG could desensitize the follicle cells to respond to GTH. Meanwhile, PACAP transiently mimicked the actions of hCG, indicating that PACAP was likely a transient downstream mediator of hCG. EGF was another strong suppressor of lhcgr expression while IGF-I was a potential fshr expression enhancer, which highlighted the crucial roles of paracrine factors in the regulation of GTHRs. In addition to the regulatory effect of these individual hormones or factors, we further revealed that the E2 action could be overridden or modulated by them. Their regulatory effects on the expression of nERs might contribute to this phenomenon. PACAP transiently reduced esr2a and esr2b expression while EGF significantly down-regulated esr2a. / As the first comprehensive study of GTHR regulation in the teleost ovary, the present study certainly enriched our knowledge in the functions of GTHs and the expression control of GTHRs during folliculogenesis. By applying the current research platform on the study of bisphenol A (BPA), an endocrine-disrupting chemical (EDC), the present study further highlighted the potential of this research platform to contribute to the future action mechanism studies of various EDCs. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Liu, Ka Cheuk. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 159-212). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract (in English) --- p.i / Abstract (in Chinese) --- p.iii / Acknowledgement --- p.v / Table of contents --- p.vi / List of figures and tables --- p.xii / Symbols and abbreviations --- p.xv / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- Hypothalamic-pituitary-gonadal axis / Chapter 1.1.1 --- Overview --- p.1 / Chapter 1.1.2 --- Gonadotropin-releasing hormone --- p.1 / Chapter 1.2 --- Folliculogenesis / Chapter 1.2.1 --- Structure of ovarian follicles --- p.2 / Chapter 1.2.2 --- Stages of folliculogenesis --- p.3 / Chapter 1.3 --- Gonadotropins and gonadotropin receptors / Chapter 1.3.1 --- History of teleost gonadotropin and gonadotropin receptors --- p.5 / Chapter 1.3.2 --- Structure --- p.6 / Chapter 1.3.3 --- Function --- p.7 / Chapter 1.3.4 --- GTH-GTHR specificity --- p.9 / Chapter 1.3.5 --- Signal transduction --- p.10 / Chapter 1.3.6 --- Expression profile of gonadotropin receptors --- p.11 / Chapter 1.3.7 --- Regulation of gonadotropin receptors --- p.12 / Chapter 1.4 --- Objectives and significances of the project --- p.14 / Chapter 1.5 --- Figure legends --- p.16 / Chapter 1.6 --- Figures --- p.18 / Chapter Chapter 2 --- Differential Regulation of Gonadotropin Receptors (fshr and lhcgr) by Estradiol in the Zebrafish Ovary Involves Nuclear Estrogen Receptors That Are Likely Located on the Plasma Membrane / Chapter 2.1 --- Introduction --- p.24 / Chapter 2.2 --- Materials and methods / Chapter 2.2.1 --- Animals --- p.25 / Chapter 2.2.2 --- Hormones and chemicals --- p.26 / Chapter 2.2.3 --- Primary follicle cell culture and drug treatment --- p.26 / Chapter 2.2.4 --- Ovarian fragment incubation --- p.27 / Chapter 2.2.5 --- Total RNA extraction and real-time qPCR --- p.27 / Chapter 2.2.6 --- Western blot analysis --- p.27 / Chapter 2.2.7 --- SEAP reporter gene assay --- p.28 / Chapter 2.2.8 --- Data analysis --- p.28 / Chapter 2.3 --- Results / Chapter 2.3.1 --- Differential stimulation of fshr and lhcgr expression in ovarian fragments and follicle cells by estradiol but not testosterone --- p.28 / Chapter 2.3.2 --- Potentiation of follicle cell responsiveness to hCG by E2 pretreatment --- p.30 / Chapter 2.3.4 --- Evidence for transcription but not translation-dependent up-regulation of lhcgr by E2 --- p.30 / Chapter 2.3.5 --- Evidence for the involvement of nuclear estrogen receptors but not G protein-coupled estrogen receptor 1 (Gper) in E2-stimulated lhcgr expression --- p.31 / Chapter 2.3.6 --- Evidence for possible localization of estrogen receptors on the plasma membrane --- p.32 / Chapter 2.3.7 --- MAPK dependence of E2 effect on lhcgr expression --- p.32 / Chapter 2.4 --- Discussion --- p.33 / Chapter 2.5 --- Table --- p.38 / Chapter 2.6 --- Figure legends --- p.39 / Chapter 2.7 --- Figures --- p.43 / Chapter Chapter 3 --- Signal Transduction Mechanisms of the Biphasic Estrogen Actions in the Regulation of Gonadotropin Receptors (fshr and lhcgr) in the Zebrafish Ovary / Chapter 3.1 --- Introduction --- p.50 / Chapter 3.2 --- Materials and methods / Chapter 3.2.1 --- Animals --- p.52 / Chapter 3.2.2 --- Hormones and chemicals --- p.52 / Chapter 3.2.3 --- Primary cell culture and drug treatment --- p.52 / Chapter 3.2.4 --- Total RNA extraction and real-time qPCR --- p.52 / Chapter 3.2.5 --- Fractionation of follicle cells --- p.52 / Chapter 3.2.6 --- Western blot analysis --- p.52 / Chapter 3.2.7 --- Statistical analysis --- p.53 / Chapter 3.3 --- Results / Chapter 3.3.1 --- Biphasic roles of cAMP-PKA pathway --- p.53 / Chapter 3.3.2 --- Effects of p38 MAPK inhibition --- p.54 / Chapter 3.3.3 --- Effects of PKC and PI3K inhibition --- p.54 / Chapter 3.4 --- Discussion --- p.55 / Chapter 3.5 --- Figure legends --- p.59 / Chapter 3.6 --- Figures --- p.61 / Chapter Chapter 4 --- Gonadotropin (hCG) and pituitary adenylate cyclase-activating peptide (PACAP) down-regulate basal and E2-stimulated gonadotropin receptors (fshr and lhcgr) in the zebrafish ovary via a cAMP-dependent but PKA-independent pathway / Chapter 4.1 --- Introduction --- p.66 / Chapter 4.2 --- Materials and methods / Chapter 4.2.1 --- Animals --- p.69 / Chapter 4.2.2 --- Hormones and chemicals --- p.69 / Chapter 4.2.3 --- Primary cell culture and drug treatment --- p.69 / Chapter 4.2.4 --- Total RNA extraction and real-time qPCR --- p.69 / Chapter 4.2.5 --- Statistical analysis --- p.69 / Chapter 4.3 --- Results / Chapter 4.3.1 --- Down-regulation of fshr and lhcgr by hCG --- p.69 / Chapter 4.3.2 --- Differential regulation of fshr and lhcgr by PACAP --- p.70 / Chapter 4.3.3 --- Inhibition of E2-regulated fshr and lhcgr expression by hCG --- p.71 / Chapter 4.3.4 --- Suppressive effects of PACAP on E2-induced fshr and lhcgr expression --- p.71 / Chapter 4.3.5 --- Role of cAMP in hCG and PACAP actions --- p.72 / Chapter 4.4 --- Discussion --- p.73 / Chapter 4.5 --- Figure legends --- p.78 / Chapter 4.6 --- Figures --- p.80 / Chapter Chapter 5 --- Paracrine regulation of gonadotropin receptors (fshr and lhcgr) by ovarian growth factors: epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) / Chapter 5.1 --- Introduction --- p.85 / Chapter 5.2 --- Materials and methods / Chapter 5.2.1 --- Animals --- p.88 / Chapter 5.2.2 --- Hormones and chemicals --- p.88 / Chapter 5.2.3 --- Primary cell culture and drug treatment --- p.88 / Chapter 5.2.4 --- Total RNA extraction and real-time qPCR --- p.88 / Chapter 5.2.5 --- Statistical analysis --- p.88 / Chapter 5.3 --- Results / Chapter 5.3.1 --- Biphasic down-regulation of lhcgr by EGF --- p.89 / Chapter 5.3.2 --- Evidence for EGFR involvement --- p.89 / Chapter 5.3.3 --- Minor role of MEK-MAPK3/1 pathway in the EGF effect on lhcgr expression --- p.90 / Chapter 5.3.4 --- Up-regulation of fshr by IGF-I --- p.90 / Chapter 5.3.5 --- Evidence for IGF-IR involvement --- p.91 / Chapter 5.3.6 --- Role of PI3K-Akt pathway in IGF-I action --- p.91 / Chapter 5.3.7 --- Role of EGF and EGFR in E2-induced GTHR expression --- p.91 / Chapter 5.3.8 --- Role of IGF-I and IGF-IR in E2-induced GTHR expression --- p.91 / Chapter 5.4 --- Discussion --- p.92 / Chapter 5.5 --- Figure legends --- p.98 / Chapter 5.6 --- Figures --- p.100 / Chapter Chapter 6 --- Regulation of estrogen receptor subtypes (esr1, esr2a and esr2b): a possible mechanism to modulate estradiol-stimulated lhcgr expression in the zebrafish ovary / Chapter 6.1 --- Introduction --- p.107 / Chapter 6.2 --- Materials and methods / Chapter 6.2.1 --- Animals --- p.110 / Chapter 6.2.2 --- Hormones and chemicals --- p.110 / Chapter 6.2.3 --- Staging ovarian follicles --- p.110 / Chapter 6.2.4 --- Primary cell culture and drug treatment --- p.110 / Chapter 6.2.5 --- Total RNA extraction and real-time qPCR --- p.110 / Chapter 6.2.6 --- Statistical analysis --- p.111 / Chapter 6.3 --- Results / Chapter 6.3.1 --- Expression profiles of estrogen receptors (ERs) in zebrafish folliculogenesis --- p.111 / Chapter 6.3.2 --- Homologous regulation of nERs by E2 --- p.111 / Chapter 6.3.3 --- Regulation of nERs by endocrine hormones (hCG and PACAP) --- p.112 / Chapter 6.3.4 --- Regulation of nERs by ovarian paracrine growth factors (EGF and IGF-I) --- p.112 / Chapter 6.3.5 --- Role of cAMP in nER regulation --- p.113 / Chapter 6.3.6 --- Role of PKA in nER regulation --- p.113 / Chapter 6.4 --- Discussion --- p.114 / Chapter 6.5 --- Figure legends --- p.119 / Chapter 6.6 --- Figures --- p.121 / Chapter Chapter 7 --- Estrogenic Action Mechanisms of Bisphenol A / Chapter 7.1 --- Introduction --- p.127 / Chapter 7.2 --- Materials and methods / Chapter 7.2.1 --- Animals --- p.129 / Chapter 7.2.2 --- Hormones and chemicals --- p.129 / Chapter 7.2.3 --- Primary cell culture and drug treatment --- p.129 / Chapter 7.2.4 --- Total RNA extraction and real-time qPCR --- p.129 / Chapter 7.2.5 --- Statistical analysis --- p.130 / Chapter 7.3 --- Results / Chapter 7.3.1 --- Expression of fshr and lhcgr interfered by BPA --- p.130 / Chapter 7.3.2 --- Signaling mechanism of BPA-induced lhcgr up-regulation --- p.130 / Chapter 7.3.3 --- Dependence of transcription and translation in BPA-induced lhcgr expression --- p.131 / Chapter 7.3.4 --- Evidence for the involvement of nuclear estrogen receptors in the BPA actions --- p.131 / Chapter 7.3.5 --- Interference on E2-induced lhcgr expression by BPA --- p.131 / Chapter 7.4 --- Discussion --- p.132 / Chapter 7.5 --- Figure legends --- p.136 / Chapter 7.6 --- Figures --- p.138 / Chapter Chapter 8: --- General Discussion / Chapter 8.1 --- Estradiol as a differential regulator of gonadotropin receptors --- p.143 / Chapter 8.2 --- Conserved role of estradiol with differential action mechanisms in lhcgr regulation of mammals and teleosts --- p.144 / Chapter 8.3 --- Involvement of classical estrogen receptors that are likely located on the plasma membrane --- p.145 / Chapter 8.4 --- Biphasic response of lhcgr to estradiol and the underlying signal transduction mechanisms --- p.145 / Chapter 8.5 --- Desensitization of follicle cells to gonadotropins by hCG --- p.146 / Chapter 8.6 --- Paracrine control of gonadotropin receptors by ovarian growth factors --- p.147 / Chapter 8.7 --- Interaction of the estrogen action with other endocrine and paracrine signals --- p.148 / Chapter 8.8 --- Action mechanism studies of an endocrine-disrupting chemical: bisphenol A --- p.150 / Chapter 8.9 --- Conclusion --- p.151 / Chapter 8.10 --- Figure legends --- p.153 / Chapter 8.11 --- Figures --- p.155 / References --- p.159
164

Expression and function analysis of kit system in the ovary of zebrafish, Danio rerio. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Finally, as the first step to study the regulation of Kit system, we found that IGF-I was a potent regulatory factor that up-regulated the expression of kitlga in zebrafish follicle cells. The stimulation involved transcription but not translation, indicating that the kitlga gene is a direct downstream target of IGF-I. The effect of IGF-I on kitlga was exerted via PI3K-Akt but not MAPK pathway. In contrast, the MAPK pathway may play a negative role in controlling kitlga expression. / Kit ligand (also named stem cell factor, SCF) is a pleiotropic growth factor with diverse biological functions. It exerts effects on target cells by binding to its cognate tyrosine kinase receptor, Kit. In mammals, accumulated evidence has demonstrated important roles for Kit ligand and Kit in gametogenesis, melanogenesis and haematopoiesis. However, very little is known about Kit system in other vertebrates. In the present study, we used zebrafish as the model to investigate the expression, regulation and function of the Kit system in the ovary. / On the other hand, cAMP is involved in regulating the expression of kitlga in zebrafish follicle cells. Two cAMP-activated effectors, PKA and Epac, have reverse effects. PKA promotes but Epac inhibits the expression of kitlga, which was identified by the respective activator. The effect of forskolin and H89 on IGF-I-induced expression of kitlga suggests a cross-talk between the two signaling pathways. Both hCG and PACAP inhibited IGF-I-induced kitlga expression, indicating that they may have negative regulation through cAMP signaling pathways in the full-grown follicles. (Abstract shortened by UMI.) / The zebrafish has two homologues of Kit ligand (kitlga and kitlgb) and Kit (kita and kitb ) instead of one copy for each as in mammals. The present study proposed the origin of these homologues in the zebrafish by phylogenetic and chromosome synteny analyses, and provided further evidence for neo- or subfunctionalization for both Kit ligands and Kit receptors in the zebrafish ovary. All four Kit system members exhibited distinct and significant changes in mRNA expression during folliculogenesis, particularly in the periovulatory period before and after final oocyte maturation and ovulation. / Then we further studied the spatial localization of each member within the follicle. The present study demonstrated that kitlga and kitb are exclusively expressed in the follicle layer, while kitlgb and kita only in the oocyte. Using CHO cell line as a bioreactor, we produced recombinant zebrafish Kitlga and Kitlgb. Analysis in mammalian COS-1 cells and zebrafish primary follicle cells confirmed their biological activity and binding specifity. Two opposite paracrine pathways of Kit system in the zebrafish ovary have been shown. Kitlga from the follicle cells preferably activates Kita in the oocyte in spite of the weak response of Kitb to it. Kitlgb from the oocyte, however, exclusively activates Kitb in the follicle cells without any effects on Kita. / Yao, Kai. / Adviser: Ge Wei. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 136-150). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
165

Effects of pesticides on biomarker gene expressions in zebrafish embryo-larvae.

January 2009 (has links)
Chow, Wing Shan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 118-129). / Abstract also in Chinese. / Abstract --- p.i / 摘要 --- p.iv / Acknowledgements --- p.viii / Table of Contents --- p.ix / List of Tables --- p.xiii / List of Figures --- p.xv / List of Abbreviations --- p.xviii / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter 1.1 --- Pesticide contaminations in the environment --- p.1 / Chapter 1.2 --- Pesticides --- p.1 / Chapter 1.2.1 --- Usage of pesticide in the world --- p.1 / Chapter 1.2.2 --- Organochlorine (OC) pesticides --- p.3 / Chapter 1.2.3 --- Organophosphate (OP) pesticides --- p.4 / Chapter 1.2.4 --- Carbamate pesticides: --- p.6 / Chapter 1.2.5 --- Pyrethroid pesticides: --- p.6 / Chapter 1.3 --- Toxicological model: Zebrafish --- p.7 / Chapter 1.4 --- Biomarkers --- p.9 / Chapter 1.4.1 --- Cytochrome P450 1A (CYP1A) --- p.12 / Chapter 1.4.2 --- Cytochrome P450 3A65 (CYP3A65) --- p.14 / Chapter 1.4.3 --- Biomarker for estrogenicity - Vitellogenin (VTG1) --- p.15 / Chapter 1.4.4 --- Catalase (CAT) and Glutathione S-transferase (GST) --- p.18 / Chapter 1.4.4.1 --- Catalase (CAT) --- p.18 / Chapter 1.4.4.2 --- Glutathion S-transferase (GST) --- p.19 / Chapter 1.4.5 --- Multiple Drug Resistance (MDR1) --- p.20 / Chapter 1.4.6 --- Acetylcholinesterase (AChE) --- p.21 / Chapter 1.5 --- Objectives of this study --- p.26 / Chapter Chapter 2 --- "Toxicity assay and biomarker studies on zebrafish embryo-larvae exposed to organochlorine pesticides: endosulfan, heptachlor and methoxychlor" --- p.28 / Chapter 2.1 --- Introduction --- p.28 / Chapter 2.2 --- Materials and methods --- p.30 / Chapter 2.2.1 --- Chemicals tested --- p.30 / Chapter 2.2.2 --- Zebrafish cultivation and egg production --- p.30 / Chapter 2.2.3 --- Determination of 96h-EC50 and 96h-LC50 of organochlorine pesticides and bisphenol-A for zebrafish embryo-larvae --- p.31 / Chapter 2.2.4 --- Pesticide exposure for determination of mRNA levels of biomarkers --- p.31 / Chapter 2.2.5 --- Extraction of total RNA from the exposed embryo-larvae samples --- p.32 / Chapter 2.2.6 --- Reverse Transcription --- p.33 / Chapter 2.2.7 --- Quantifications of mRNA levels by qPCR --- p.35 / Chapter 2.2.7.1 --- Primer design --- p.35 / Chapter 2.2.7.2 --- Validation of qPCR conditions --- p.36 / Chapter 2.2.7.3 --- Quantification of biomarker gene expression levels in zebrafish embryo-larvae --- p.42 / Chapter 2.2.8 --- Statistical analysis --- p.43 / Chapter 2.3. --- Results --- p.44 / Chapter 2.3.1 --- Toxicities of OC pesticides and bisphenol-A --- p.44 / Chapter 2.3.2 --- Effects of OC pesticides and bisphenol-A on biomarker gene expression levels --- p.44 / Chapter 2.4. --- Discussions --- p.60 / Chapter 2.4.1 --- Toxicities of OC pesticides and bisphenol-A --- p.60 / Chapter 2.4.2 --- Effects of OC pesticides on CYP1A gene expression --- p.61 / Chapter 2.4.3 --- Effects of OC pesticides on CYP3A65 gene expression --- p.61 / Chapter 2.4.4 --- Effects of OC pesticides on VTG1 gene expression --- p.63 / Chapter 2.4.5 --- Effects of OC pesticides on MDR1 gene expression --- p.64 / Chapter 2.5 --- Conclusion --- p.65 / Chapter Chapter 3 --- "Toxicity assay and biomarker studies on zebrafish embryo-larvae exposed to a organochlorine pesticide, chlorpyrifos" --- p.66 / Chapter 3.1 --- Introduction --- p.66 / Chapter 3.2 --- Materials and methods --- p.68 / Chapter 3.2.1 --- Chemicals tested --- p.68 / Chapter 3.2.2 --- Zebrafish cultivation and egg production --- p.68 / Chapter 3.2.3 --- Determination of 96h-EC50 and 96h-LC50 of chlorpyrifos for zebrafish embryo-larvae --- p.68 / Chapter 3.2.4 --- Pesticide exposure for determination of mRNA levels of biomarkers --- p.68 / Chapter 3.2.5 --- Extraction of total RNA from the exposed embryo-larvae samples --- p.69 / Chapter 3.2.6 --- Reverse Transcription --- p.69 / Chapter 3.2.7 --- Quantifications of mRNA levels by qPCR --- p.70 / Chapter 3.2.7.1 --- Primer design --- p.70 / Chapter 3.2.7.2 --- Validation of qPCR conditions --- p.70 / Chapter 3.2.7.3 --- Quantification of biomarker gene expression levels in zebrafish embryo-larvae --- p.75 / Chapter 3.2.8 --- Determination of acetylcholinesterase (AChE) activities --- p.76 / Chapter 3.2.9 --- Statistical analysis --- p.77 / Chapter 3.3 --- Results --- p.78 / Chapter 3.3.1 --- Toxicities of chlorpyrifos --- p.78 / Chapter 3.3.2 --- Effects of chlorpyrifos on CAT and GST gene expression levels --- p.81 / Chapter 3.3.3 --- Effects of chlorpyrifos on acetylcholinesterase (AChE) activity --- p.83 / Chapter 3.4 --- Discussions --- p.86 / Chapter 3.4.1 --- Toxicity of chlorpyrifos --- p.86 / Chapter 3.4.2 --- Effect of chlorpyrifos on CAT and GST gene expressions --- p.86 / Chapter 3.4.3 --- Effect of chlorpyrifos on AChE activity --- p.88 / Chapter 3.5 --- Conclusions --- p.89 / Chapter Chapter 4 --- Toxicity assay and biomarker studies on zebrafish embryo-larvae exposed to carbamate and pyrethroid pesticides --- p.90 / Chapter 4.1 --- Introduction --- p.90 / Chapter 4.2 --- Materials and methods --- p.92 / Chapter 4.2.1 --- Chemicals tested --- p.92 / Chapter 4.2.2 --- Zebrafish cultivation and egg production --- p.92 / Chapter 4.2.3 --- Determination of 96h-EC50 and 96h-LC50 of aldicarb and cypermethrin for zebrafish embryo-larvae --- p.92 / Chapter 4.2.4 --- Pesticide exposure for determination of mRNA levels of biomarkers --- p.92 / Chapter 4.2.5 --- Quantification of biomarker gene expression levels in zebrafish embryo- larvae and Determination of acetylcholinesterase (AChE) activity --- p.94 / Chapter 4.2.6 --- Statistical analysis --- p.94 / Chapter 4.3 --- Results --- p.95 / Chapter 4.3.1 --- Toxicities of aldicarb and cypermethrin --- p.95 / Chapter 4.3.2 --- Effects of aldicarb and cypermethrin on CAT and GST gene expression levels.. --- p.99 / Chapter 4.3.3 --- Effects of aldicarb on acetylcholinesterase (AChE) activity --- p.102 / Chapter 4.4 --- Discussion --- p.105 / Chapter 4.4.1 --- Toxicity of aldicarb of cypermethrin --- p.105 / Chapter 4.4.2 --- Effect of aldicarb and cypermethrin on CAT and GST gene expressions --- p.105 / Chapter 4.4.3 --- Effect of aldicarb on AChE activity --- p.107 / Chapter 4.5 --- Conclusion --- p.108 / Chapter Chapter 5 --- General Conclusion --- p.109 / Chapter 5.1 --- Toxicities of pesticides --- p.109 / Chapter 5.2 --- Effects of OC pesticides on biomarker gene expressions --- p.113 / Chapter 5.3 --- "Effects of chlorpyrifos, aldicarb and cypermetrhin on biomarker gene expressions" --- p.116 / Chapter 5.4 --- Effect of chlorpyrifos and aldicarb on AChE activity --- p.116 / References --- p.118
166

Proteomic analysis of zebrafish folliculogenesis.

January 2008 (has links)
Lau, Shuk Wa. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 84-102). / Abstracts in English and Chinese. / Thesis Committee --- p.i / Abstract (in English) --- p.ii / Abstract (in Chinese) --- p.iv / Acknowledgement --- p.v / Table of content --- p.vi / List of figures --- p.ix / Symbols and abbreviations --- p.x / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- Structure of ovarian follicles --- p.1 / Chapter 1.2 --- Folliculogenesis and its control --- p.2 / Chapter 1.2.1 --- Ovarian follicle growth and development --- p.2 / Chapter 1.2.2 --- Follicle recruitment and regulation --- p.4 / Chapter 1.2.3 --- Oocyte maturation and ovulation --- p.9 / Chapter 1.2.4 --- Intercellular communication between oocytes and somatic cells --- p.10 / Chapter 1.3 --- Overview of proteomics --- p.12 / Chapter 1.3.1 --- Two-dimensional gel electrophoresis --- p.13 / Chapter 1.3.2 --- Mass spectrometry --- p.14 / Chapter 1.4 --- Objectives of the study --- p.15 / Chapter Chapter 2 --- Proteomic Analysis of Folliculogenesis in Zebrafish Ovary --- p.19 / Chapter 2.1 --- Introduction --- p.19 / Chapter 2.2 --- Materials and Methods --- p.21 / Chapter 2.2.1 --- Animals --- p.21 / Chapter 2.2.2 --- Isolation of ovarian follicles --- p.21 / Chapter 2.2.3 --- Protein extraction and quantification --- p.22 / Chapter 2.2.4 --- Two-dimensional electrophoresis --- p.23 / Chapter 2.2.5 --- Staining --- p.24 / Chapter 2.2.6 --- In-gel digestion --- p.24 / Chapter 2.2.7 --- Mass spectrometry --- p.25 / Chapter 2.3 --- Results --- p.25 / Chapter 2.3.1 --- Establishment of the protein profiles of different follicle stages --- p.25 / Chapter 2.3.2 --- Mass spectrometry analysis on the differentially expressed proteins --- p.26 / Chapter 2.4 --- Discussion --- p.27 / Chapter Chapter 3 --- Characterization of Y-box Binding Protein 1 (YB-1) in Zebrafish --- p.46 / Chapter 3.1 --- Introduction --- p.46 / Chapter 3.2 --- Materials and Methods --- p.49 / Chapter 3.2.1 --- Animals --- p.49 / Chapter 3.2.2 --- Isolation of ovarian follicles --- p.49 / Chapter 3.2.3 --- Protein extraction and quantification --- p.49 / Chapter 3.2.4 --- SDS polyacrylaminde gel electrophoresis (SDS-PAGE) --- p.50 / Chapter 3.2.5 --- Western blot analysis --- p.50 / Chapter 3.2.6 --- RNA isolation and reverse transcription --- p.51 / Chapter 3.2.7 --- Semi-quantitative RT-PCR quantification of expression --- p.51 / Chapter 3.2.8 --- Data analysis --- p.52 / Chapter 3.2.9 --- Immunohistochemistry --- p.52 / Chapter 3.2.10 --- Cloning of full-length ybl cDNA from zebrafish ovary and construction of recombinant plasmid for expressing ybl --- p.53 / Chapter 3.2.11 --- Expression and purification of recombinant zebrafish YB-1 protein --- p.54 / Chapter 3.2.12 --- Immunoprecipitation --- p.55 / Chapter 3.3 --- Results --- p.58 / Chapter 3.3.1 --- Confirmation of the presence of YB-1 --- p.58 / Chapter 3.3.2 --- Tissue distribution of YB-1 protein and ybl gene expression in zebrafish --- p.58 / Chapter 3.3.3 --- Stage distribution of YB-1 protein and ybl gene expression in ovarian follicles --- p.59 / Chapter 3.3.4 --- Localization of YB-1 protein within the ovarian follicle --- p.59 / Chapter 3.3.5 --- Degradation of YB-1 in the ovary --- p.60 / Chapter 3.3.6 --- Production of recombinant YB-1 (zfYB-1) --- p.60 / Chapter 3.3.7 --- Identification of YB-1 -bound partners --- p.60 / Chapter 3.4 --- Discussion --- p.61 / Chapter Chapter 4 --- General Discussion --- p.77 / References --- p.84
167

The neuroprotective effect of Fructus Alpiniae oxyphyllae in PC12 cells and zebrafish / 益智仁在PC12細胞和斑馬魚上的神經保護作用

Liao, Wan Ying January 2010 (has links)
University of Macau / Institute of Chinese Medical Sciences
168

The Effects of Growth Hormone in the Inner Ear of Zebrafish (<i>Danio rerio</i>) during Hair Cell Regeneration

Lin, Chia-Hui 01 August 2010 (has links)
Although deafness is a universal problem, effective treatments have remained elusive. In order to develop potential treatments, an overall understanding of the cellular process of auditory hair cell regeneration, which occurs in fish but not mammals, must be established. A previous microarray analysis and qRT-PCR validation of noise-exposed zebrafish showed that growth hormone (GH) was significantly upregulated during the process of auditory hair cell regeneration. Thus, GH may play an important role during hair cell regeneration. However, cellular effects of exogenous GH in the zebrafish auditory hair cell regeneration have not been examined after noise exposure. To understand the effect of GH in hair cell regeneration, adult zebrafish were exposed to a 150 Hz pure tone at a source level of 179 dB re 1 μPa RMS for 36 hours. Afterward the fish were immediately injected intraperitoneally with carp recombinant GH (20 μg/gram of body mass) or buffer (0.1 M, pH 7.4 phosphate buffer) and then placed in a recovery tank. The effect of GH on apoptosis in fish inner ear end organs were examined using TUNEL-labeling. Cell proliferation was measured by BrdU incorporation assay. Hair cell regeneration was determined by phalloidin-labeling to allow visualization of hair cell stereociliary bundles. After GH injection, the numbers of TUNEL-labeled cells showed a significant decrease in all three inner ear end organs (saccule, lagena, utricle), suggesting GH may suppress hair cell death induced by acoustic trauma. Higher levels of cell proliferation were also observed in the ears of GH-injected fish, indicating that GH is capable of activating cell mitosis in the zebrafish auditory system. Following sound exposure, the GH-injected group exhibited greater numbers of saccular hair cell bundles compared to the buffer-injected group. These results indicate that GH promotes hair cell regeneration following acoustic damage. Future studies are needed to examine the potential therapeutic benefits of GH in the mammalian ear.
169

The effects of surface access and dissolved oxygen levels on survival time of a water-breathing and an air-breathing fish species exposed to a plant toxin (Croton tiglium, Euphorbiaceae, seed extract) /

Kulakkattolickal, Augusthy Thevasia. January 1986 (has links)
No description available.
170

Animal aggregation, interference and the ideal free distribution

Gillis, Darren Michael. January 1985 (has links)
No description available.

Page generated in 0.0641 seconds