Spelling suggestions: "subject:"zeros : polinomios"" "subject:"zeros : polinˆomios""
1 |
Localização de zeros reais de polinômios intervalares / Real zero localization of interval polynomialsMarins, Jussara Maria January 1996 (has links)
Este trabalho contém um estudo para isolar os zeros reais de polinômios cujos coeficientes podem ser perturbados, isto é, os coeficientes possuem variações que constituem intervalos. Assim chamamos a tais polinômios de Polinômios Intervalares do mesmo modo que chamamos de polinômios complexos àqueles que possuem coeficientes complexos. Isolar os zeros, delimitar regiões que os contenham, dizer se um polinômio estável ou determinar qual a perturbação aceitável nos seus coeficientes, de modo a preservar certas características são problemas que aparecem em diversos setores da Computação Científica e em especial, na Teoria de Controle. Neste trabalho, a família dos polinômios intervalares é inicialmente analisada dentro das possibilidades algébricas que as operações intervalares, conforme definidas por Moore, permitem. Dentro deste contexto, são definidas as operações elementares entre polinômios intervalares assim como são estudadas as suas novas propriedades. Em função das limitações inerentes à abordagem anterior, a família [p] dos polinômios intervalares, é também, caracterizada por um novo enfoque, através de 4 polinômios reais específicos da família, - os polinômios limítrofes - a partir dos quais podemos obter informações relevantes a respeito da enumeração e localização dos seus zeros reais ou eventualmente sobre os zeros complexos. Obtivemos, com o uso dos polinômios limítrofes, um resultado mais eficiente para determinar se um polinômio intervalar possui apenas zeros reais, de modo que, neste caso, eles possam ser isolados num algoritmo algébrico de complexidade menor, do que uma outra alternativa baseada no cálculo de autovalores. Além disso. localizar os zeros de polinômios intervalares é uma fase importante para o cálculo aproximado ou mesmo exato da região que contém efetivamente os zeros do polinômio intervalar. Em geral, os métodos de cálculo aproximado dos zeros precisam de uma região inicial que contenha apenas um zero a ser pesquisado. Esta é uma fase crítica de todo o processo, feito pela abordagem algébrica ou pela abordagem de aproximações numéricas. / The aim of this work is to isolate through algebraic process the real polynomial roots that have coefficients which can be perturbed. These perturbations (variations) on the coefficients can be enclosed in intervals. Then we call these polynomials. interval polynomials, in the same way that we call complex polynomial those ones formed with coefficients that are complex numbers. One of the main points in the solution of polynomial problems is to limit the regions that have all roots, all the negative ones, the stability, and so on. These questions present good solutions when the polynomials are real or complex, on the other hand, when the coefficients are perturbed or we need to decide what kind of variation can be done, in order to preserve the main features of the polynomial, then we are workin g with problems that appear in Scientific Computation and, specially, in Control Theory. Besides this, we need to isolate the roots of interval polynomial before calculating them. In general, the methods for approximating zeros need an initial region that has just one root. In the case where the accuracy is necessary or if we already know of the result instability, the algebraic processes are recommended.
|
2 |
Localização de zeros reais de polinômios intervalares / Real zero localization of interval polynomialsMarins, Jussara Maria January 1996 (has links)
Este trabalho contém um estudo para isolar os zeros reais de polinômios cujos coeficientes podem ser perturbados, isto é, os coeficientes possuem variações que constituem intervalos. Assim chamamos a tais polinômios de Polinômios Intervalares do mesmo modo que chamamos de polinômios complexos àqueles que possuem coeficientes complexos. Isolar os zeros, delimitar regiões que os contenham, dizer se um polinômio estável ou determinar qual a perturbação aceitável nos seus coeficientes, de modo a preservar certas características são problemas que aparecem em diversos setores da Computação Científica e em especial, na Teoria de Controle. Neste trabalho, a família dos polinômios intervalares é inicialmente analisada dentro das possibilidades algébricas que as operações intervalares, conforme definidas por Moore, permitem. Dentro deste contexto, são definidas as operações elementares entre polinômios intervalares assim como são estudadas as suas novas propriedades. Em função das limitações inerentes à abordagem anterior, a família [p] dos polinômios intervalares, é também, caracterizada por um novo enfoque, através de 4 polinômios reais específicos da família, - os polinômios limítrofes - a partir dos quais podemos obter informações relevantes a respeito da enumeração e localização dos seus zeros reais ou eventualmente sobre os zeros complexos. Obtivemos, com o uso dos polinômios limítrofes, um resultado mais eficiente para determinar se um polinômio intervalar possui apenas zeros reais, de modo que, neste caso, eles possam ser isolados num algoritmo algébrico de complexidade menor, do que uma outra alternativa baseada no cálculo de autovalores. Além disso. localizar os zeros de polinômios intervalares é uma fase importante para o cálculo aproximado ou mesmo exato da região que contém efetivamente os zeros do polinômio intervalar. Em geral, os métodos de cálculo aproximado dos zeros precisam de uma região inicial que contenha apenas um zero a ser pesquisado. Esta é uma fase crítica de todo o processo, feito pela abordagem algébrica ou pela abordagem de aproximações numéricas. / The aim of this work is to isolate through algebraic process the real polynomial roots that have coefficients which can be perturbed. These perturbations (variations) on the coefficients can be enclosed in intervals. Then we call these polynomials. interval polynomials, in the same way that we call complex polynomial those ones formed with coefficients that are complex numbers. One of the main points in the solution of polynomial problems is to limit the regions that have all roots, all the negative ones, the stability, and so on. These questions present good solutions when the polynomials are real or complex, on the other hand, when the coefficients are perturbed or we need to decide what kind of variation can be done, in order to preserve the main features of the polynomial, then we are workin g with problems that appear in Scientific Computation and, specially, in Control Theory. Besides this, we need to isolate the roots of interval polynomial before calculating them. In general, the methods for approximating zeros need an initial region that has just one root. In the case where the accuracy is necessary or if we already know of the result instability, the algebraic processes are recommended.
|
3 |
Localização de zeros reais de polinômios intervalares / Real zero localization of interval polynomialsMarins, Jussara Maria January 1996 (has links)
Este trabalho contém um estudo para isolar os zeros reais de polinômios cujos coeficientes podem ser perturbados, isto é, os coeficientes possuem variações que constituem intervalos. Assim chamamos a tais polinômios de Polinômios Intervalares do mesmo modo que chamamos de polinômios complexos àqueles que possuem coeficientes complexos. Isolar os zeros, delimitar regiões que os contenham, dizer se um polinômio estável ou determinar qual a perturbação aceitável nos seus coeficientes, de modo a preservar certas características são problemas que aparecem em diversos setores da Computação Científica e em especial, na Teoria de Controle. Neste trabalho, a família dos polinômios intervalares é inicialmente analisada dentro das possibilidades algébricas que as operações intervalares, conforme definidas por Moore, permitem. Dentro deste contexto, são definidas as operações elementares entre polinômios intervalares assim como são estudadas as suas novas propriedades. Em função das limitações inerentes à abordagem anterior, a família [p] dos polinômios intervalares, é também, caracterizada por um novo enfoque, através de 4 polinômios reais específicos da família, - os polinômios limítrofes - a partir dos quais podemos obter informações relevantes a respeito da enumeração e localização dos seus zeros reais ou eventualmente sobre os zeros complexos. Obtivemos, com o uso dos polinômios limítrofes, um resultado mais eficiente para determinar se um polinômio intervalar possui apenas zeros reais, de modo que, neste caso, eles possam ser isolados num algoritmo algébrico de complexidade menor, do que uma outra alternativa baseada no cálculo de autovalores. Além disso. localizar os zeros de polinômios intervalares é uma fase importante para o cálculo aproximado ou mesmo exato da região que contém efetivamente os zeros do polinômio intervalar. Em geral, os métodos de cálculo aproximado dos zeros precisam de uma região inicial que contenha apenas um zero a ser pesquisado. Esta é uma fase crítica de todo o processo, feito pela abordagem algébrica ou pela abordagem de aproximações numéricas. / The aim of this work is to isolate through algebraic process the real polynomial roots that have coefficients which can be perturbed. These perturbations (variations) on the coefficients can be enclosed in intervals. Then we call these polynomials. interval polynomials, in the same way that we call complex polynomial those ones formed with coefficients that are complex numbers. One of the main points in the solution of polynomial problems is to limit the regions that have all roots, all the negative ones, the stability, and so on. These questions present good solutions when the polynomials are real or complex, on the other hand, when the coefficients are perturbed or we need to decide what kind of variation can be done, in order to preserve the main features of the polynomial, then we are workin g with problems that appear in Scientific Computation and, specially, in Control Theory. Besides this, we need to isolate the roots of interval polynomial before calculating them. In general, the methods for approximating zeros need an initial region that has just one root. In the case where the accuracy is necessary or if we already know of the result instability, the algebraic processes are recommended.
|
4 |
Algoritmos algebricos para enumerar e isolar zeros polinomiais complexos / Algebraic algorithms for enumerate and isolate complex polynomial zerosCamargo-Brunetto, Maria Angelica de Oliveira January 1994 (has links)
O presente trabalho trata do problema de isolar zeros de polinômios complexos. Muitos algoritmos calculam zeros polinomiais, a partir de regiões iniciais disjuntas, cada uma contendo um único zero. Entretanto o problema de obter tais regiões ainda e alvo de estudo, uma vez que as soluções propostas ainda não são satisfatórias. A obtenção de regiões disjuntas, denominada de isolamento de raízes está diretamente relacionada com a contagem (enumeração) do número de raízes numa determinada região do plano complexo. Algoritmos para enumerar e isolar raízes de polinômios complexos são analisados, desenvolvidos e implementados. A proposta de uma modificação no método numérico de Wilf e realizada, na qual se usa basicamente Seqüências de Sturm e o principio do argumento da analise complexa. Um enfoque algébrico e dado para o algoritmo, visando enumerar zeros de forma exata dentro de um retângulo. Diversas melhorias foram introduzidas, principalmente no tratamento da presença de zeros nas fronteiras de um retângulo alvo de pesquisa. O desempenho do algoritmo proposto e avaliado tanto nos aspectos teórico como pratico, através da determinação da complexidade teórica e através de testes experimentais. A abrangência do algoritmo também e verificada, através da realização de testes com polinômios mal condicionados. Uma comparação deste algoritmo com um recente trabalho e também realizada, mostrando a adequação deles de acordo com o tipo de polinômio. / In this thesis, the problem of isolating polynomial complex zeros is treated. There are many algorithms to calculate polynomial zeros, having previously isolated regions, each containning only one zero. Despite of this, the problem of obtainning such regions is still unsatisfactory. This problem, called root isolation, requires number of root in a given region of the complex plane. Algorithms to enumerate and isolate complex polynomial roots are analised, developed and implemented. A modified Wilf method is given, in with Sturm Sequences and the principle of argument is used. An algebraic approach is given, with the aim to enumerate zeros inside a rectangle in an exact way. Several improvements are introduced, mainly to treat zeros on the boundary of the rectangle. The performance of this new algorithm is evaluated theoretical as well as practice point of view, by means experimental tests. The robustness of the algorithm is verified by means of tests with ill-conditioned polynomials. The algorithm proposed is compared with a recent paper, presenting the performance of both, according different polynomial classes.
|
5 |
Algoritmos algebricos para enumerar e isolar zeros polinomiais complexos / Algebraic algorithms for enumerate and isolate complex polynomial zerosCamargo-Brunetto, Maria Angelica de Oliveira January 1994 (has links)
O presente trabalho trata do problema de isolar zeros de polinômios complexos. Muitos algoritmos calculam zeros polinomiais, a partir de regiões iniciais disjuntas, cada uma contendo um único zero. Entretanto o problema de obter tais regiões ainda e alvo de estudo, uma vez que as soluções propostas ainda não são satisfatórias. A obtenção de regiões disjuntas, denominada de isolamento de raízes está diretamente relacionada com a contagem (enumeração) do número de raízes numa determinada região do plano complexo. Algoritmos para enumerar e isolar raízes de polinômios complexos são analisados, desenvolvidos e implementados. A proposta de uma modificação no método numérico de Wilf e realizada, na qual se usa basicamente Seqüências de Sturm e o principio do argumento da analise complexa. Um enfoque algébrico e dado para o algoritmo, visando enumerar zeros de forma exata dentro de um retângulo. Diversas melhorias foram introduzidas, principalmente no tratamento da presença de zeros nas fronteiras de um retângulo alvo de pesquisa. O desempenho do algoritmo proposto e avaliado tanto nos aspectos teórico como pratico, através da determinação da complexidade teórica e através de testes experimentais. A abrangência do algoritmo também e verificada, através da realização de testes com polinômios mal condicionados. Uma comparação deste algoritmo com um recente trabalho e também realizada, mostrando a adequação deles de acordo com o tipo de polinômio. / In this thesis, the problem of isolating polynomial complex zeros is treated. There are many algorithms to calculate polynomial zeros, having previously isolated regions, each containning only one zero. Despite of this, the problem of obtainning such regions is still unsatisfactory. This problem, called root isolation, requires number of root in a given region of the complex plane. Algorithms to enumerate and isolate complex polynomial roots are analised, developed and implemented. A modified Wilf method is given, in with Sturm Sequences and the principle of argument is used. An algebraic approach is given, with the aim to enumerate zeros inside a rectangle in an exact way. Several improvements are introduced, mainly to treat zeros on the boundary of the rectangle. The performance of this new algorithm is evaluated theoretical as well as practice point of view, by means experimental tests. The robustness of the algorithm is verified by means of tests with ill-conditioned polynomials. The algorithm proposed is compared with a recent paper, presenting the performance of both, according different polynomial classes.
|
6 |
Algoritmos algebricos para enumerar e isolar zeros polinomiais complexos / Algebraic algorithms for enumerate and isolate complex polynomial zerosCamargo-Brunetto, Maria Angelica de Oliveira January 1994 (has links)
O presente trabalho trata do problema de isolar zeros de polinômios complexos. Muitos algoritmos calculam zeros polinomiais, a partir de regiões iniciais disjuntas, cada uma contendo um único zero. Entretanto o problema de obter tais regiões ainda e alvo de estudo, uma vez que as soluções propostas ainda não são satisfatórias. A obtenção de regiões disjuntas, denominada de isolamento de raízes está diretamente relacionada com a contagem (enumeração) do número de raízes numa determinada região do plano complexo. Algoritmos para enumerar e isolar raízes de polinômios complexos são analisados, desenvolvidos e implementados. A proposta de uma modificação no método numérico de Wilf e realizada, na qual se usa basicamente Seqüências de Sturm e o principio do argumento da analise complexa. Um enfoque algébrico e dado para o algoritmo, visando enumerar zeros de forma exata dentro de um retângulo. Diversas melhorias foram introduzidas, principalmente no tratamento da presença de zeros nas fronteiras de um retângulo alvo de pesquisa. O desempenho do algoritmo proposto e avaliado tanto nos aspectos teórico como pratico, através da determinação da complexidade teórica e através de testes experimentais. A abrangência do algoritmo também e verificada, através da realização de testes com polinômios mal condicionados. Uma comparação deste algoritmo com um recente trabalho e também realizada, mostrando a adequação deles de acordo com o tipo de polinômio. / In this thesis, the problem of isolating polynomial complex zeros is treated. There are many algorithms to calculate polynomial zeros, having previously isolated regions, each containning only one zero. Despite of this, the problem of obtainning such regions is still unsatisfactory. This problem, called root isolation, requires number of root in a given region of the complex plane. Algorithms to enumerate and isolate complex polynomial roots are analised, developed and implemented. A modified Wilf method is given, in with Sturm Sequences and the principle of argument is used. An algebraic approach is given, with the aim to enumerate zeros inside a rectangle in an exact way. Several improvements are introduced, mainly to treat zeros on the boundary of the rectangle. The performance of this new algorithm is evaluated theoretical as well as practice point of view, by means experimental tests. The robustness of the algorithm is verified by means of tests with ill-conditioned polynomials. The algorithm proposed is compared with a recent paper, presenting the performance of both, according different polynomial classes.
|
Page generated in 0.0369 seconds