• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hybrid technologies for remediation of recalcitrant industrial wastewater

Jagadevan, Sheeja January 2011 (has links)
In metal machining processes, the regulation of heat generation and lubrication at the contact point are achieved by application of a fluid referred to as metalworking fluid (MWF). This has the combined features of the cooling properties of water and lubricity of oil. MWFs inevitably become operationally exhausted with age and intensive use, which leads to compromised properties, thereby necessitating their safe disposal. Disposal of this waste through a biological route is an increasingly attractive option, since it is effective with relatively low energy demands when compared to current physical and chemical options. However, biological treatment is challenging since MWF are chemically complex, including the addition of toxic biocides which are added specifically to retard microbial deterioration whilst the fluids are operational. This makes bacterial treatment exceptionally challenging and has stimulated the search and need to assess technologies which complement biological treatment. In this study the remediation, specifically of the recalcitrant component of a semi-synthetic MWF, employing a novel hybrid treatment approach consisting of both bacteriological and chemical treatment, was investigated. Three chemical pre-treatment methods (Fenton’s oxidation, nano-zerovalent iron (nZVI) oxidation and ozonation) of the recalcitrant components followed by bacterial degradation were examined. The synergistic interaction of Fenton’s-biological oxidation and nZVI-biodegradation led to an overall COD reduction of 92% and 95.5% respectively, whereas pre-treatment with ozone reduced the total pollution load by 70% after a post-biological step. An enhancement in biodegradability was observed after each of the chemical treatments, thus facilitating the overall treatment process. The findings from this study established that the use of non-pathogenic microorganisms to remediate organic materials present in MWF wastewater is a favourable alternative to energy demanding physical and chemical treatment options. However, optimal performance of this biological process may require chemical enhancement, particularly for those components that are resistant to biological transformation.
2

Electrochemical Deactivation of Nitrate, Arsenate, and Trichloroethylene

Mishra, Dhananjay January 2006 (has links)
This research investigated the mechanism, kinetics and feasibility of nitrate, arsenate, and trichloroethylene inactivation on zerovalent iron (ZVI), mixed-valent iron oxides, and boron doped diamond film electrode surfaces, respectively. Nitrate ( ) is a common co-contaminant at sites remediated using permeable reactive barriers (PRBs). Therefore, understanding nitrate reactions with ZVI is important for understanding the performance of PRBs. This study investigated the reaction mechanisms of with ZVI under conditions relevant to groundwater treatment. Tafel analysis and electrochemical impedance spectroscopy were used to probe the surface reactions. Batch experiments were used to study the reaction rate of with freely corroding and cathodically protected iron wires. The removal kinetics for the air formed oxide (AFO) were 2.5 times slower than that of water formed oxide (WFO).This research also investigated the use of slowly corroding magnetite (Fe3O4) and wustite (FeO) as reactive adsorbent media for removing As(V) from potable water. Observed corrosion rates for mixed valent iron oxides were found to be 15 times slower than that of zerovalent iron under similar conditions. Electrochemical and batch and column experiments were performed to study the corrosion behavior and gain a deeper understanding on the effects of water chemistry and operating parameters, such as, empty bed contact times, influent arsenic concentrations, dissolved oxygen levels and solution pH values and other competing ions. Reaction products were analyzed by X-Ray diffraction and XPS to determine the fate of the arsenic.This research also investigated use of boron doped diamond film electrodes for reductive dechlorination of trichloroethylene (TCE). TCE reduction resulted in nearly stoichiometric production of acetate. Rates of TCE reduction were found to be independent of the electrode potential at potentials below -1 V with respect to the standard hydrogen electrode (SHE). However, at smaller overpotentials, rates of TCE reduction were dependent on the electrode potential. Short lived species analysis and density functional simulations indicate that TCE reduction may occur by formation of a surface complex between TCE and carbonyl groups present on the surface.
3

DEGRADATION OF 1,4-DIOXANE USING METALLIC NANOPARTICLES UNDER VISIBLE LIGHT

Bhattacharjee, Linkon 01 May 2020 (has links)
1,4-dioxane is an emerging contaminant and fully miscible organic compound which has been found extensively in wastewater effluent. Conventional water treatment technologies like carbon adsorption, and air stripping are inefficient in removing this extremely mobile and persistent contaminant from water. In this study, different types of metallic nanoparticles, e.g., nanoscale zero-valent iron (nZVI), γFe2O3, and Fe(III)-doped TiO2 were used to investigate the removal of 1,4-dioxane under visible light. These nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM) and dynamic light scattering (DLS). The experiments were first carried out using deionized water (DIW) at pH 7 and pH 3. nZVI was found more efficient than other nanoparticles under visible light irradiation at pH 3. No 1,4-dioxane removal was obtained for all cases at pH 7 under visible light, or at pH 3 in dark. Moreover, light intensity also plays a significant role in 1,4-dioxane removal. Removal of 22.3%, 40.0% and >99.9% of 1.4-dioxane was reached under 2.4 mW/cm2, 2.6 mw/cm2 and 3.25 mW/cm2 light intensities, respectively, after 6 h of irradiation. The most efficient nanoparticle nZVI was applied to wastewater effluent from Carbondale Southeast Wastewater Treatment Plant. From the results, it was found that 1,4-dioxane degradation took longer time in wastewater effluent than in DIW, because of the presence of other constituents in the wastewater sample. nZVI is also capable of removing 1,4-dioxane in presence of trichloroethylene (TCE) and tetrachloroethylene (PCE) at pH 3 under visible light. In comparison, TiO2 nanoparticle is capable of degrading 1,4-dioxane under visible light or under sunlight at pH 7. Moreover, TiO2 removed 1,4-dioxane in presence of both TCE and PCE at pH 7 under visible light or sunlight. This study found a cost-effective and efficient solution for removing 1,4-dioxane from wastewater effluent that can be reused, by using metallic nanoparticles under visible light.
4

Procédé de traitement in situ des sites pollués par réduction chimique à l'aide de micro et nanoparticules de fer zérovalent / In situ remediation of polluted sites by chemical reduction using zerovalent iron micro and nanoparticles

Kabeche, Tanina 27 March 2014 (has links)
Dans cette thèse, nous avons déterminé les mécanismes qui régissent l'efficacité des particules de fer zérovalent (ZVI) dans la dépollution des sols et des eaux souterraines. Dans les milieux contaminés par des polluants accepteurs d'électrons, le ZVI est injecté in situ sous forme de suspensions de particules micro et/ou nanométriques. La première étude a porté sur la caractérisation de poudres industrielles et de particules synthétisées au laboratoire à partir de thé vert. Afin de comparer la réactivité de l'ensemble des particules, un test en milieu fermé a été mis en oeuvre avec une solution de nitrate. Ce test a permis de différencier les particules en mettant en évidence des mécanismes réactionnels et des cinétiques de réduction qui dépendent du type de poudre utilisé. La seconde étude a porté sur la dégradation du chrome hexavalent (dans une matrice sol et eau) en combinant le ZVI à du thiosulfate de sodium. Les résultats ont été probants et ont mené au dimensionnement d'un pilote sur un site de Soléo Services. Enfin, deux cas de remédiation de sites pollués aux solvants chlorés ont été étudiés. Des expériences de laboratoire ont été menées pour expliquer l'impact des conditions opératoires sur l'efficacité du traitement / This thesis aims at a better understanding of mechanisms governing the efficiency of zerovalent iron (ZVI) particles in soil and groundwater remediation. In these processes ZVI is injected in situ as micro and/or nanoparticles slurry in areas contaminated by electron acceptor pollutants. At first, we characterized industrial powders and particles synthetized with green tea in the laboratory. In order to compare the reactivity of all the particles, a batch test has been carried out with nitrate solution. Differences in pathways and kinetic reduction have been exhibited. Secondly, we combined ZVI with sodium thiosulfate to investigate hexavalent chromium degradation (soil and water matrices). The results are conclusive and were used to design a pilot on a Soléo Services site.Finally, remediation cases of sites contaminated by chlorinated solvents have been investigated. Lab experiments have been run to explain the influence of operating conditions on the treatment efficacy
5

Surfactant-Assisted Zerovalent Iron Dechlorination Of Polychlorinated Biphenyl In Contaminated Sediment / Remédiation de sédiment contaminé par des polychlorobiphényls par déchloration réductive au fer zérovalent assistée par tensioactif

Wu, Yingxin 24 May 2016 (has links)
La contamination des sols et sédiments par les polychlorobiphényls (PCB) pose un problème sanitaire et environnemental à l’échelle mondiale, en raison de la récalcitrance et de la toxicité de ces composés. L’objectif de cette thèse est de chercher un procédé de remédiation de sédiments contaminés aux PCB en utilisant le fer zérovalent (Fe0). D’abord, une campagne de prélèvement a été menée sur des sites contaminés par le recyclage des déchets électroniques en Chine du sud. La contamination en PCB n’était pas aussi forte que prévue, mais la présence de métaux lourds accentue la difficulté de la remédiation. Ensuite, a été étudiée la déchloration des PCB par le Fe0 en solution aqueuse, en présence de métaux et surfactants. Les résultats ont montré la déchloration progressive des PCB et révélé l’itinéraire réactionnel avec la spécificité des congénères et la régio-spécificité. L’importance relative des facteurs qui influent se classe selon : tensioactif > acide humique > pH > Ni2. La décontamination du sédiment a été étudiée par 1) lavage avec une solution aqueuse de tensioactif suivie de la déchloration des PCB en solution et 2) mélange direct avec le Fe0 et les tensioactifs. La seconde approche s’est avérée prometteuse pour la remédiation / Soil and sediment contamination by polychlorinated biphenyls (PCBs) is a global health and environmental concern, since PCBs are toxic and recalcitrant. The aim of this thesis is to find a remediation process to PCBs contaminated sediments by using zerovalent iron (ZVI). To begin the studies on remediation, a survey was conducted on sites contaminated by e-waste recycling activities in south China. PCBs contamination was not as severe as previously, whereas the co-existence of PCBs and heavy metals increases the difficulty of remediation. Afterwards, the feasibility PCBs degradation by ZVI in aqueous solutions was investigated. Results confirmed the stepwise dechlorination of PCBs by ZVI and the major pathway with congener specifity and regiospecifity. The relative importance of the influential factors to ZVI degradation of PCBs was in the order of surfactants > humic acid > pH > Ni2+. Sediment decontamination was studied by 1) washing with an aqueous solution of surfactant followed by ZVI dechlorination of PCBs and 2) direct mixing with ZVI and surfactant solution. The second approach gave promising results for remediation

Page generated in 0.0514 seconds