Spelling suggestions: "subject:"beta riemann function"" "subject:"meta riemann function""
1 |
O conjunto excepcional do problema de GoldbachDalpizol, Luiz Gustavo January 2018 (has links)
Seja E(X) a cardinalidade dos números pares menores ou iguais a X que não podem ser escritos como soma de dois primos. O objetivo central desta dissertação é apresentar uma demonstração de uma estimativa para E(X) dada por Hugh L. Montgomery e Robert C. Vaughan em [22]. Mais precisamente, estabeleceremos a existência de uma constante positiva (efetivamente computável) tal que E(X) X1 ; para todo X su cientemente grande. / Let E(X) the cardinality of even numbers not exceeding X which cannot be written as a sum of two primes. The main goal of this dissertation is to present a proof of an estimate for E(X) given by Hugh L. Montgomery e Robert C. Vaughan in [22]. More precisely, we will establish the existence of a positive constant (e ectively computable) such that E(X) X1 for all su ciently large X:
|
2 |
O conjunto excepcional do problema de GoldbachDalpizol, Luiz Gustavo January 2018 (has links)
Seja E(X) a cardinalidade dos números pares menores ou iguais a X que não podem ser escritos como soma de dois primos. O objetivo central desta dissertação é apresentar uma demonstração de uma estimativa para E(X) dada por Hugh L. Montgomery e Robert C. Vaughan em [22]. Mais precisamente, estabeleceremos a existência de uma constante positiva (efetivamente computável) tal que E(X) X1 ; para todo X su cientemente grande. / Let E(X) the cardinality of even numbers not exceeding X which cannot be written as a sum of two primes. The main goal of this dissertation is to present a proof of an estimate for E(X) given by Hugh L. Montgomery e Robert C. Vaughan in [22]. More precisely, we will establish the existence of a positive constant (e ectively computable) such that E(X) X1 for all su ciently large X:
|
3 |
O conjunto excepcional do problema de GoldbachDalpizol, Luiz Gustavo January 2018 (has links)
Seja E(X) a cardinalidade dos números pares menores ou iguais a X que não podem ser escritos como soma de dois primos. O objetivo central desta dissertação é apresentar uma demonstração de uma estimativa para E(X) dada por Hugh L. Montgomery e Robert C. Vaughan em [22]. Mais precisamente, estabeleceremos a existência de uma constante positiva (efetivamente computável) tal que E(X) X1 ; para todo X su cientemente grande. / Let E(X) the cardinality of even numbers not exceeding X which cannot be written as a sum of two primes. The main goal of this dissertation is to present a proof of an estimate for E(X) given by Hugh L. Montgomery e Robert C. Vaughan in [22]. More precisely, we will establish the existence of a positive constant (e ectively computable) such that E(X) X1 for all su ciently large X:
|
Page generated in 0.1034 seconds