• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 10
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A study on the fabrication and applications of quasi-one-dimensional zinc selenide nanostructures

Leung, Yee-pan., 梁懿斌. January 2007 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
12

Growth of one dimensional Zinc selenide nanostructures by metalorganic chemical vapor deposition. / 利用有機金屬化學氣相沉積方法生長一維硒化鋅鈉米結構 / Growth of one dimensional Zinc selenide nanostructures by metalorganic chemical vapor deposition. / Li yong you ji jin shu hua xue qi xiang chen ji fang fa sheng chang yi wei xi hua xin na mi jie gou

January 2004 (has links)
Leung Yee Pan = 利用有機金屬化學氣相沉積方法生長一維硒化鋅鈉米結構 / 梁懿斌. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 80-82). / Text in English; abstracts in English and Chinese. / Leung Yee Pan = li yong you ji jin shu hua xue qi xiang chen ji fang fa sheng chang yi wei xi hua xin na mi jie gou / Liang Yibin. / Acknowledgements --- p.ii / Abstract --- p.iii / Chapter Chapter 1 - --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Motivation --- p.3 / Chapter 1.2.1 --- ZnSe --- p.3 / Chapter 1.2.2 --- MOCVD --- p.3 / Chapter 1.3 --- Our Work --- p.4 / Chapter Chapter 2 - --- Experiment --- p.5 / Chapter 2.1 --- MOCVD System --- p.5 / Chapter 2.2 --- Metalorganic Sources --- p.5 / Chapter 2.3 --- Substrates --- p.7 / Chapter 2.4 --- Substrate Preparations --- p.7 / Chapter 2.5 --- Preheating (Applied Only when Using GaAs Substrates) --- p.7 / Chapter 2.6 --- Growth of Epi-layer (Applied Only when Using GaAs Substrates) --- p.8 / Chapter 2.7 --- Growth of ZnSe Nanowires on Si(100) and ZnSe/GaAs(100) --- p.8 / Chapter 2.8 --- The Samples --- p.9 / Chapter Chapter 3 - --- Characterization --- p.10 / Chapter 3.1 --- Surface Morphologies --- p.10 / Chapter 3.1.1 --- Scanning Electron Microscopy --- p.10 / Chapter 3.1.2 --- Atomic Force Microscopy --- p.12 / Chapter 3.2 --- Structural Properties - X-Ray Diffraction --- p.13 / Chapter 3.3 --- Optical Properties - Photoluminescence --- p.15 / Chapter 3.4 --- Other Techniques --- p.16 / Chapter Chapter 4 - --- Results --- p.17 / Chapter 4.1 --- ZnSe Nanowires Grown on Si(100) --- p.17 / Chapter 4.1.1 --- Effect of Growth Temperature --- p.17 / Chapter 4.2 --- Growth of ZnSe Nanowires on GaAs( 100) - The First Trial --- p.20 / Chapter 4.3 --- Optimizing the ZnSe Epi-layer --- p.21 / Chapter 4.3.1 --- Surface of GaAs(100) --- p.21 / Chapter 4.3.2 --- ZnSe Epi-layer Grown at Different Reactor Pressures --- p.22 / Chapter 4.4 --- Importance of Au --- p.26 / Chapter 4.5 --- Growth of ZnSe Nanowires on GaAs(lOO) - A Systematic Study --- p.28 / Chapter 4.5.1 --- Growth Rates --- p.28 / Chapter 4.5.2 --- Overall Morphologies --- p.32 / Chapter 4.5.3 --- Classifying the Morphologies --- p.37 / Chapter 4.5.4 --- Abundances of Different Morphologies of Different Samples --- p.40 / Chapter 4.5.5 --- Growth Direction --- p.45 / Chapter 4.5.6 --- Structure of the Nanowires --- p.50 / Chapter 4.5.7 --- Optical Properties of the Nanowires --- p.54 / Chapter Chapter 5 - --- Discussions --- p.57 / Chapter 5.1 --- Overview of the MOCVD Process --- p.57 / Chapter 5.1.1 --- Effects of Growth Temperature on Growth Rate of MOCVD --- p.58 / Chapter 5.1.2 --- Effects of Reactor Pressure on Growth Rate of MOCVD --- p.59 / Chapter 5.2 --- Effect of Reactor Pressure on the Growth Rate of the Nanowires --- p.60 / Chapter 5.3 --- Growth Mechanisms of the Nanowires --- p.64 / Chapter 5.3.1 --- VLS Mechanism --- p.64 / Chapter 5.3.2 --- Spiral Growth Mechanism --- p.66 / Chapter 5.3.3 --- Reentrant Corner Mechanism --- p.67 / Chapter 5.3.4 --- Roles of Au Particles and ZnSe Epi-layer --- p.68 / Chapter 5.3.5 --- Growth Mechanisms of Different Types of Nanowires --- p.69 / Chapter 5.3.6 --- Effect of Growth Temperature --- p.71 / Chapter 5.4 --- Quality of the Nanowires --- p.72 / Chapter 5.5 --- "Remarks of the AFM Experiments and the ""Transferred"" Samples" --- p.72 / Chapter Chapter 6 - --- Conclusions --- p.75 / Appendices --- p.77 / Chapter I - --- "Estimation of the mass, other than the nanowires, contributed to the sample" --- p.77 / Chapter II - --- Calculation of the growth angle with respect to the surface normal --- p.78 / References --- p.80
13

Study of epitaxial ZnSe films synthesized by pulsed deposition /

Ryu, Yung-ryel, January 1998 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1998. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
14

Doping and electron stimulated desorption of zinc selenide grown by molecular beam epitaxy

VanMil, Brenda. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xi, 105 p. : ill. Includes abstract. Includes bibliographical references (p. 100-105).
15

Study of epitaxial ZnSe films synthesized by pulsed deposition

Ryu, Yung-ryel, January 1998 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1998. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
16

Synthetic, mechanistic, structural, and dynamic NMR investigations of zinc bis(amide) compounds

Gaul, David Allen 05 1900 (has links)
No description available.
17

The electrical and optical characterization of MOCVD grown GaAs: ZnSe heterojunctions /

Rochemont, Pierre de January 1986 (has links)
No description available.
18

Photoluminescence investigation of compensation in nitrogen doped ZnSe

Moldovan, Monica. January 1999 (has links)
Thesis (Ph. D.)--West Virginia University, 1999. / Title from document title page. Document formatted into pages; contains xiv, 154 p. : ill. Includes abstract. Includes bibliographical references (p. 148-154).
19

The electrical and optical characterization of MOCVD grown GaAs: ZnSe heterojunctions /

Rochemont, Pierre de January 1986 (has links)
No description available.
20

Photoluminescent properties of annealed ZnCdSe epitaxial layers on InP substrates =: 磷化銦上鋅鎘硒外延層退火處理後的光致發光性質. / 磷化銦上鋅鎘硒外延層退火處理後的光致發光性質 / Photoluminescent properties of annealed ZnCdSe epitaxial layers on InP substrates =: Lin hua yin shang xin ke xi wai yan ceng tui huo chu li hou de guang zhi fa guang xing zhi. / Lin hua yin shang xin ke xi wai yan ceng tui huo chu li hou de guang zhi fa guang xing zhi

January 1998 (has links)
by Wong Kin Sang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 61-62). / Text in English; abstract also in Chinese. / by Wong Kin Sang. / Table of contents --- p.I / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Interest in ZnxCd1-x Se/InP --- p.1 / Chapter 1.2 --- Conditions of thermal annealing --- p.2 / Chapter 1.3 --- Advantages of using photoluminescence (PL) --- p.3 / Chapter 1.4 --- Our work --- p.4 / Chapter Chapter 2 --- Experimental setup and procedures / Chapter 2.1 --- PL measurements --- p.6 / Chapter 2.1.1 --- Setup --- p.6 / Chapter 2.1.2 --- Types of PL measurements --- p.6 / Chapter 2.2 --- Annealing experiments --- p.8 / Chapter 2.2.1 --- Setup --- p.8 / Chapter 2.2.2 --- Types of annealing --- p.10 / Chapter 2.2.3 --- Procedures --- p.11 / Chapter Chapter 3 --- Results and discussions / Chapter 3.1 --- Room temperature PL studies of ZnxCd1-xSe/InP --- p.12 / Chapter 3.1.1 --- As-grown ZnxCd1-x Se/InP --- p.12 / Chapter 3.1.1.1 --- Peak energy vs concentration --- p.12 / Chapter 3.1.2 --- Annealing studies --- p.15 / Chapter 3.1.2.1 --- Isothermal annealing --- p.15 / Chapter 3.1.2.2 --- Isochronal annealing --- p.20 / Chapter 3.2 --- PL studies of ZnxCd1-xSe/InP at 10 K temperature --- p.22 / Chapter 3.2.1 --- As-grown ZnxCd1-xSe/InP --- p.22 / Chapter 3.2.1.1 --- Excitation power density dependence --- p.22 / Chapter 3.2.1.2 --- Peak energy vs Zn concentration --- p.26 / Chapter 3.2.2 --- Annealing studies --- p.29 / Chapter 3.2.2.1 --- Isothermal annealing --- p.29 / Chapter 3.2.2.2 --- Isochronal annealing --- p.33 / Chapter 3.3 --- Temperature dependent PL studies of ZnxCd1-xSe/InP --- p.37 / Chapter 3.3.1 --- As-grown ZnxCd1-xSe/InP --- p.37 / Chapter 3.3.1.1 --- Peak energy vs temperature --- p.37 / Chapter 3.3.1.2 --- Peak width vs temperature --- p.46 / Chapter 3.3.2 --- Annealing studies --- p.50 / Chapter 3.3.1.1 --- Peak energy vs temperature --- p.50 / Chapter 3.3.1.2 --- Peak width vs temperature --- p.55 / Chapter Chapter 4 --- Conclusions --- p.59 / References --- p.61

Page generated in 0.0509 seconds