• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 12
  • 8
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 116
  • 116
  • 42
  • 33
  • 29
  • 22
  • 20
  • 18
  • 16
  • 15
  • 14
  • 12
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Engineered DNA-Binding Proteins for Targeted Genome Editing and Gene Regulation

Maeder, Morgan Lee 07 June 2014 (has links)
Engineered DNA-binding proteins enable targeted manipulation of the genome. Zinc fingers are the most well characterized DNA-binding domain and for many years research has focused on understanding and manipulating the sequence-specificities of these proteins. Recently, major advances in the ability to engineer zinc finger proteins, as well as the discovery of a new class of DNA-binding domains - transcription activator-like effectors (TALEs), have made it possible to rapidly and reliably engineer proteins targeted to any sequence of interest. With this capability, focus has shifted to exploring the applications of this powerful technology. In this dissertation I explore three important applications of engineered DNA-binding proteins.
72

Sequence-Specific DNA Detection Utilizing Custom-Designed Zinc Finger Proteins

Ooi, Aik Teong January 2007 (has links)
DNA diagnostics are important technologies in molecular and cellular biology. By allowing identification of specific sequences, DNA-based diagnostics potentially provide more accurate and rapid results than protein- or antigen-based diagnostics, primarily because phenotypic changes come much later than changes in genotype. Despite this advantage, there are fewer diagnostic or imaging systems that target DNA than those targeting proteins, antibodies, or antigens.Each type of DNA-based diagnostic has its own, unique set of limitations; however, most can be attributed to issues related to sequence restriction, signal detection, specificity, or some combination thereof. For example, while PCR-based methods allow amplification and assessment of specific DNA sequences, they lack the ability to report information of specific cells, or cell types, within the heterogeneous pool of cells typically found in a tumor biopsy. In addition, none of the currently available DNA detection methods has the potential to be utilized in living cells, a disadvantage which limits the potential applications.The work presented here describes the design and development of a new methodology for the detection of specific double-stranded DNA sequences. This detection method is based on the concept that two inactive fragments of a reporter protein, each coupled to engineered zinc finger DNA-binding motifs, are able to reassemble and form an active complex in the presence of a predefined DNA sequence. This system, designated sequence-enabled reassembly (SEER), can achieve single base-pair specificity, and has the potential to be utilized in living cells.In this dissertation, we discuss the efforts from constructing to refining the system, as well as the future applications of SEER in diagnostics and therapeutics. Chapter I will provide an introduction to DNA detection methods, on which the principles of the SEER system are based. Chapter II describes the design and construction of an enzymatic SEER system, SEER-LAC, using beta-lactamase as the enzyme. In Chapter III, we outline the in vitro characterization of the SEER-LAC system, followed by its optimization in Chapter IV. Chapter V illustrates the efforts to develop SEER system for mammalian cell culture applications. In the final chapter, the future developments and applications of SEER are discussed.
73

Determining the Intrinsic Properties of the C1B Domain that Influence PKC Ligand Specificity and Sensitivity to Reactive Oxygen Species

Stewart, Mikaela D. 16 December 2013 (has links)
Each member of the protein kinase C (PKC) family activates cell signaling pathways with different and sometimes opposing cell functions, such as cell division, migration, or death. Because of the importance of these processes in human diseases and disorders like cancer, stroke, and Alzheimer’s disease, there is a need for drugs which modify the action of PKC. However, drug design is difficult due to the complicated nature of PKC regulation. To better understand the differential regulation of PKC activity, these studies probe the structure, dynamics, and reactivity of one of the domains responsible for PKC regulation, C1B. C1B binds signaling molecules and translocates PKC to membranes in order to release the kinase domain from inhibition. Mutagenesis and ligand-binding assays monitored with fluorescence and nuclear magnetic resonance (NMR) techniques show that a single variable residue in C1B dramatically affects the sensitivity to signal activators. Investigation of the domain structure and dynamics using NMR revealed the identity of this residue alters the dynamics of the activator binding loops, without changing the structure. NMR studies of the C1B variants in membrane-mimicking micelles showed this residue also changes the interaction of the regulatory domain with lipids. These results demonstrate PKC isoforms have evolved specific functions by tuning dynamics and membrane affinity. Alternatively, PKC can be activated by reactive oxygen species by a mechanism that does not require binding of signaling molecules or membrane localization. To investigate the role of C1B in this type of signaling, the regulatory domain reactivity is monitored via NMR and gel electrophoresis. These studies reveal a particular cysteine residue in C1B that is most reactive, an alternative conformation of C1B in which this residue is more exposed, and modification of C1B leads to unfolding and zinc loss. Because the regulatory domains are responsible for auto-inhibition of the kinase domain, C1B unfolding provides a plausible explanation for activation of PKC by reactive oxygen species. The relation of the intrinsic C1B properties to the activation of PKC can be used to develop drugs with a single mechanism and to better understand how closely related signaling proteins develop specific functions.
74

Characterisation of the zinc fingers of Erythroid Kruppel-Like Factor

Hallal, Samantha January 2008 (has links)
Doctor of Philosophy (PhD) / Gene expression is known to be regulated at the level of transcription. Recently, however, there has been a growing realisation of the importance of gene regulation at the post-transcriptional level, namely at the level of pre-mRNA processing (5’ capping, splicing and polyadenylation), nuclear export, mRNA localisation and translation. Erythroid krüppel-like factor (Eklf) is the founding member of the Krüppel-like factor (Klf) family of transcription factors and plays an important role in erythropoiesis. In addition to its nuclear presence, Eklf was recently found to localise to the cytoplasm and this observation prompted us to examine whether this protein has a role as an RNA-binding protein, in addition to its well-characterised DNA-binding function. In this thesis we demonstrate that Eklf displays RNA-binding activity in an in vitro and in vivo context through the use of its classical zinc finger (ZF) domains. Furthermore, using two independent in vitro assays, we show that Eklf has a preference for A and U RNA homoribopolymers. These results represent the first description of RNA-binding by a member of the Klf family. We developed a dominant negative mutant of Eklf by expressing its ZF region in murine erythroleukaemia (MEL) cells. We used this to investigate the importance of this protein in haematopoietic lineage decisions by examining its effect on the multipotent K562 cell line. We provide evidence that Eklf appears to be critical not only for the promotion of erythropoiesis, but also for the inhibition of megakaryopoiesis.
75

The multiple roles of zinc finger domains

Simpson, Raina Jui Yu. January 2004 (has links)
Thesis (Ph. D.)--University of Sydney, 2004. / Title from title screen (viewed 14 May 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the School of Molecular and Microbial Biosciences, Faculty of Science. Includes bibliographical references. Also available in print form.
76

Characterization of a novel Gli5 gene during embryonic development in Xenopus laevis /

Mai, Ming, January 1999 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, Faculty of Medicine, 1999. / Typescript. Bibliography: p. 115-134.
77

Structural analysis of the EGR family of transcription factors : templates for predicting protein-DNA interactions /

Duke, Jamie L. January 2006 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2006. / Typescript. Includes bibliographical references (leaves 47-48).
78

Novel genetic and molecular properties of meiotic recombination protein PRDM9

Altemose, Nicolas Frank January 2015 (has links)
Meiotic recombination is a fundamental biological process in sexually reproducing organisms, enabling offspring to inherit novel combinations of mutations, and ensuring even segregation of chromosomes into gametes. Recombination is initiated by programmed Double Strand Breaks (DSBs), the genomic locations of which are determined in most mammals by PRDM9, a rapidly evolving DNA-binding protein. In crosses between different mouse subspecies, certain Prdm9 alleles cause infertility in hybrid males, implying a critical role in fertility and speciation. Upon binding to DNA, PRDM9 deposits a histone modification (H3K4me3) typically found in the promoters of expressed genes, suggesting that binding might alter the expression of nearby genes. Many other questions have remained about how PRDM9 initiates recombination, how it causes speciation, and why it evolves so rapidly. This body of work investigates these questions using complementary experimental and analytical methodologies. By generating a map of human PRDM9 binding sites and applying novel sequence analysis methods, I uncovered new DNA-binding modalities of PRDM9 and identified sequence-independent factors that predict binding and recombination outcomes. I also confirmed that PRDM9 can affect gene expression by binding to promoters, identifying candidate regulatory targets in meiosis. Furthermore, I showed that PRDM9’s DNA-binding domain also mediates strong protein-protein interactions that produce PRDM9 multimers, which may play an important functional role. Finally, by generating high-resolution maps of PRDM9 binding in hybrid mice, I provide evidence for a mechanism to explain PRDM9-mediated speciation as a consequence of the joint evolution of PRDM9 and its binding targets. This work reveals that PRDM9 binding on one chromosome strongly impacts DSB formation and/or repair on the homologue, suggesting a novel role for PRDM9 in promoting efficient homology search and DSB repair, both critical for meiotic progression and fertility. One consequence is that PRDM9 may play a wider role in mammalian speciation.
79

Characterisation of HP1γ in mammalian cells

Wiese, Meike January 2018 (has links)
The degree of chromatin compaction plays a fundamental role in controlling the accessibility of DNA to the transcription machinery as well as other DNA-dependent biological pathways. The mammalian HP1 (Heterochromatin protein 1) protein family consists of three members: HP1α, β and γ. Each paralogue regulates formation and maintenance of heterochromatin by binding to the repressive chromatin marks H3K9me2/3 with their chromodomains (CDs). Despite high sequence conservation, each HP1 paralogue possesses specific functions, which are likely to be cell type specific. The aim of my thesis was to find novel functions for HP1γ in mouse embryonic stem cells (mESCs) and breast cancer cells. Mass spectrometry analysis identified citrullination of residues R38 and R39 within the CD of HP1γ. I show that these residues are citrullinated by peptidyl arginine deiminase 4 (PADI4) in vitro and in vivo. Mutations in HP1γ (R38/9A), designed to mimic the loss of charge accompanied with citrullination, affect HP1γ’s binding to H3K9me3 peptides and reduce its residence time on chromatin in differentiated mESCs, indicating a role for citrullination in regulating HP1γ binding to chromatin during differentiation. Furthermore, I studied the phenotype of HP1γ depletion in two human breast cancer models and found that HP1γ is essential for cell proliferation and viability of cancer, but not of normal epithelial cells. I performed whole transcriptome analysis in breast cancer cells depleted of HP1γ and cross-referenced it with its genomic localisation, which identified increased expression of interferon/antiviral defense genes and activation of pro-apoptotic pathways. Whilst genes involved in these pathways were not directly bound by HP1γ, this analysis also identified HP1γ as a novel regulator of zinc finger (ZNF) genes. In summary, I identified novel post-translational modifications in HP1γ and characterised them in mESCs. I further demonstrated a role for HP1γ regulating breast cancer cell viability and identified HP1γ as a novel regulator of ZNF genes. My findings highlight HP1γ as a potential target for breast cancer therapy.
80

Biochemical, Biophysical and Evolutionary Perspectives of Zinc Finger Proteins in Mycobacterium smegmatis

Ghosh, Subho January 2017 (has links) (PDF)
Transcription is a major step in expression of genes of a given organism. Due to environmental constrains this step must be regulated in the favour of the sustenance and growth of the organism. Here comes the relevance of transcription factors, mostly proteins which regulate transcription. One such important group of transcription factors is the zinc finger proteins. It is well known that in eukaryotes the C2H2 zinc finger domain containing proteins are the largest group of transcription factors while in prokaryotes the largest group of transcription factors are represented by helix-turn-helix motif containing proteins. Till now only two C2H2 zinc finger domain proteins-Ros and Muc have been found in alpha proteobacteria which are also transcription factors. In eukaryotes the second largest group of zinc finger proteins have their zinc ion coordinated by four cysteine residues- the C4 zinc finger proteins. They make the nuclear hormone receptor superfamily of proteins. They have also been shown to act as transcription factors. But in eubacteria no such proteins have been described in details except an isolated report of crystal structure of a C-terminal zinc finger domain protein- Jann_2411 from Jannaschia sp. Though a lot of transcription factors have been described in mechanistic details in Escherichia coli and Bacillus subtilis, the list of well described mycobacterial transcription factors is short. Given this fact and the lack of any known zinc finger domain transcription factor in actinobacteria we wanted to see whether M. smegmatis genome also encode any homologue of Jann_2411 and if does whether they have ability to modulate transcription. To meet our aim we did BLASTP search against the genome of M. smegmatis using Jann_2411 as query. We found four C-terminal zinc finger domain proteins –Msmeg_0118. Msmeg_3613, Msmeg_3408 and Msmeg_1531, which we named as Mycobacterial single zinc finger protein (Mszfp) and numbered- Mszfp1, Mszfp2, Mszfp3 and Mszfp4, respectively. Mszfp1 and Mszfp2 were chosen for study as they were the top most hits. In this thesis:- Chapter1 introduces zinc finger proteins, transcription and several levels of control of transcription process in eubacteria. In chapter2 we characterised Mszfp1 biophysically and probed its secondary structure content and oligomeric state in the native and demetallated conditions. We have also shown that this conserved hypothetical protein is expressed throughout the growth phase of M. smegmatis, regulated by SigA and SigB. We have also showed that Mszfp1 is a DNA binding protein in the native state and the demetallated protein has altered DNA binding ability. It was noted that on over expression Mszfp1 affects colony morphology and biofilm forming ability, of M. smegmatis. In chapter3 the ability of Mszfp1 to bind to RNA polymerase of M. smegmatis has been explored. It was found that Mszfp1 can activate transcription by interacting with CTD/NTD of α subunit and domain 4 of σA like CRP on type II CRP activated promoter. In chapter4 similar to Mszfp1 the biophysical study of Mszfp2 has been carried out. It was found that Mszfp2 is also a predominantly alpha helical protein with oligomeric structure having DNA binding ability. Similar to Mszfp1 Mszfp2 on over expression changes the colony morphology. Chapter5 deals with the RNA polymerase binding ability of Mszfp2 and its ability to activate transcription by interacting with CTD/NTD of α subunit but not the σA. In chapter6 we have presented a glimpse of the possible biophysical properties of Mszfp3 and Mszfp4 and given a snapshot of distribution of homologues of Mszfps among other actinobacteria. We have also put forward a hypothesis about the origin of C4 and CCHC zinc finger domains. Chapter7 is the summary of the work embedded in the earlier chapters. In Appendix I is described the making of a bacteria (Bacillus licheniformis) driven heat engine. Appendix II describes an effort to study the visco-elastic properties of Mycobacterium smegmatis cells.

Page generated in 0.1078 seconds