Spelling suggestions: "subject:"link oxide"" "subject:"sink oxide""
1 |
Structural, optical and sensing properties of cobalt and indium doped zinc oxide prepared mechano-chemicallyManamela, Mahlatse Fortunate January 2018 (has links)
Thesis ((MSc. (Physics)) -- University of Limpopo, 2018 / The mechano-chemical technique was employed to synthesise the undoped, cobalt
and indium single and double doped ZnO nanoparticles powder samples. The x-ray
diffraction (XRD), scanning electron microscopy (SEM), raman spectroscopy (RS),
ultraviolet-visible spectroscopy (UV-vis), and photoluminescence (PL) spectroscopy
were employed to characterise the prepared samples. The XRD and energy dispersive
spectroscopy (EDS) results confirmed that the prepared samples were of hexagonal
wurzite form. In addition, it was found that the diffraction pattern for In-ZnO
nanoparticles display an additional peak which was associated with In3+ dopant. The
peak suggest that In3+ ions prefer the interstitial site in the hexagonal ZnO structure.
Doping the ZnO nanoparticles with Co and In did not significantly affect the lattice
parameters but the average grain sizes of the nanoparticles were found to be reduced.
The morphology of the samples revealed by the SEM images appear to be more
spherical. The Raman modes obtained from the excitations wavelength of 514.532 nm
further indicated that the prepared samples were of hexagonal ZnO structures. The
energy band gap of the prepared samples were calculated from the UV-vis data which
showed that the doped ZnO nanoparticles had smaller energy band gap compared to
the undoped ZnO nanoparticles. The excitation wavelength of 350 nm were used in
the PL study where various defects related emissions were observed for the doped
and undoped ZnO nanoparticles. The kenosistec station equipment was used to
investigate the prepared samples for gas sensing application. Ammonia (NH3),
methane (CH4) and hydrogen sulphide (H2S) gases were probed. In all the response
curves observed, the undoped and double doped ZnO nanoparticles are being
favoured at a temperature range 200 – 350oC. In addition, the double doped ZnO
nanoparticles was found to be more sensitive to CH4 at low temperatures and low
v
concentrations. / National Research Foundation (NRF) and
Council for Scientific and Industrial Research (CSIR)
|
2 |
Mercerization and Enzymatic Pretreatment of Cellulose in Dissolving PulpsAlmlöf Ambjörnsson, Heléne January 2013 (has links)
This thesis deals with the preparation of chemically and/or enzymatically modified cellulose. This modification can be either irreversible or reversible. Irreversible modification is used to prepare cellulose derivatives as end products, whereas reversible modification is used to enhance solubility in the preparation of regenerated cellulose. The irreversible modification studied here was the preparation of carboxymethyl cellulose (CMC) using extended mercerization of a spruce dissolving pulp. More specifically the parameters studied were the effect of mercerization at different proportions of cellulose I and II in the dissolving pulp, the concentration of alkali, the temperature and the reaction time. The parameters evaluated were the degree of substitution, the filterability and the amount of gel obtained when the resulting CMC was dissolved in water. Molecular structures of CMC and its gel fractions were analysed by using NIR FT Raman spectroscopy. It was found that the alkali concentration in the mercerization stage had an extensive influence on the subsequent etherification reaction. FT Raman spectra of CMC samples and their gel fractions prepared with low NaOH concentrations (9%) in the mercerization stage indicated an incomplete transformation of cellulose to Na-cellulose before carboxymethylation to CMC. Low average DS values of the CMC, i.e. between 0.42 and 0.50 were obtained. Such CMC dissolved in water resulted in very thick and semi solid gum-like gels, probably due to an uneven distribution of substituents along the cellulose backbone. FT Raman spectra of CMC samples and their gel fractions mercerized at higher alkaline concentration, i.e. 18.25 and 27.5% in the mercerization stage, indicated on the other hand a complete transformation of cellulose to Na-cellulose before carboxymethylation to CMC. Higher average DS values of the CMC, i.e. between 0.88 and 1.05 were therefore obtained. When dissolved in water such CMC caused gel formation especially when prepared from dissolving pulp with a high fraction of cellulose II. The reversible modification studied was the dissolution of cellulose in NaOH/ZnO. Here the effect of enzyme pretreatment was investigated by using two mono-component enzymes; namely xylanase and endoglucanase, used in consecutive stages. It was found that although the crystallinity and the specific surface area of the dissolving pulp sustained minimal change during the enzymatic treatment; the solubility of pulp increased in a NaOH/ZnO solution from 29% for untreated pulp up to 81% for enzymatic pretreated pulp. / Baksidetext Cellulose can be chemically and/or enzymatically modified. Irreversible modification is used to prepare cellulose derivatives as end products, reversible modification to enhance solubility in the preparation of regenerated cellulose. The irreversible modification studied here was the preparation of carboxymethyl cellulose (CMC) using extended mercerization of a spruce dissolving pulp. More specifically the parameters studied were the effect of mercerization at different proportions of cellulose I and II in the dissolving pulp, the concentration of alkali, the temperature and the reaction time. It was found that the alkali concentration in the mercerization stage had an extensive influence on the subsequent etherification reaction. The content of cellulose II had little effect on degree of substitution (DS) at low NaOH concentration, but tended to decrease DS at higher NaOH concentration in both cases compared with cellulose I. It was also found that the content of cellulose II correlates with the gel formation obtained when the CMC is dissolved in water. The reversible modification studied was the dissolution of cellulose in NaOH/ZnO. Here the effect of enzyme pretreatment was investigated by using two mono-component enzymes; namely xylanase and endoglucanase, used in consecutive stages. It was found that the solubility of pulp increased in a NaOH/ZnO solution from 29% for untreated pulp up to 81% for enzymatic pretreated pulp.
|
3 |
Alternative transparent electrodes for organic light emitting diodesTomita, Yuto 10 March 2009 (has links) (PDF)
Solid state lighting is a new environmentally friendly light source. So far, light emitting diodes (LEDs) and organic LEDs (OLEDs) have been presented as candidates with potentially high efficiency. Recent advances of OLEDs in device architecture, light-out coupling, and materials have ensured high efficiency, exceeding that of incandescent light bulbs. In contrast to conventional point source LEDs, OLEDs distribute light throughout the surface area and are not restricted by their size. Additionally, OLEDs are expected to reach sufficient stability in the near future. The remaining challenge for OLEDs is their cost. New OLED technologies provide cost effective manufacturing methods which could be presented for transparent electrode materials because indium tin oxide (ITO), a widely used material as a transparent electrode for OLEDs, is less than optimal due to its high element price. In this work, alternative transparent electrodes for OLEDs as a replacement of ITO were studied. First, Al doped ZnO (ZnO:Al) which is composed of abundant materials was investigated with DC magnetron sputtering under a wide range of experimental conditions. The optimised ZnO:Al received comparable performance with conventional ITO films, low sheet resistance of 22.8 Ω/sq as well as a high transparency of 93.1 % (average value in the visible range). Various type of p-i-n OLEDs were employed on the structured ZnO:Al using photolithography. Green OLEDs with double emission layers have been archived stable efficiencies even at higher luminance. Also, OLEDs using two fluorescent colour system on ZnO:Al anode showed a purely white emission. It has been found that the OLEDs on ZnO:Al anode has comparable or better device efficiencies and operational lifetime compared to OLEDs on conventional ITO anode. As another alternative electrode, the conductive polymer Baytron®PH510 (PEDOT:PSS) was investigated. Due to a relatively high sheet resistance of PEDOT:PSS, metal grid was designed for large size OLEDs. White OLEDs on PEDOT anode with a size of 5 × 5 cm2 have achieved more than 10 lm/W of power efficiency using a scattering foil. Furthermore, up-scaled devices on 10 × 10 cm2 were also demonstrated. These results showed ZnO:Al and PEDOT are suitable for OLEDs as anode and have high potential as alternative transparent electrode materials.
|
4 |
Alternative transparent electrodes for organic light emitting diodesTomita, Yuto 06 October 2008 (has links)
Solid state lighting is a new environmentally friendly light source. So far, light emitting diodes (LEDs) and organic LEDs (OLEDs) have been presented as candidates with potentially high efficiency. Recent advances of OLEDs in device architecture, light-out coupling, and materials have ensured high efficiency, exceeding that of incandescent light bulbs. In contrast to conventional point source LEDs, OLEDs distribute light throughout the surface area and are not restricted by their size. Additionally, OLEDs are expected to reach sufficient stability in the near future. The remaining challenge for OLEDs is their cost. New OLED technologies provide cost effective manufacturing methods which could be presented for transparent electrode materials because indium tin oxide (ITO), a widely used material as a transparent electrode for OLEDs, is less than optimal due to its high element price. In this work, alternative transparent electrodes for OLEDs as a replacement of ITO were studied. First, Al doped ZnO (ZnO:Al) which is composed of abundant materials was investigated with DC magnetron sputtering under a wide range of experimental conditions. The optimised ZnO:Al received comparable performance with conventional ITO films, low sheet resistance of 22.8 Ω/sq as well as a high transparency of 93.1 % (average value in the visible range). Various type of p-i-n OLEDs were employed on the structured ZnO:Al using photolithography. Green OLEDs with double emission layers have been archived stable efficiencies even at higher luminance. Also, OLEDs using two fluorescent colour system on ZnO:Al anode showed a purely white emission. It has been found that the OLEDs on ZnO:Al anode has comparable or better device efficiencies and operational lifetime compared to OLEDs on conventional ITO anode. As another alternative electrode, the conductive polymer Baytron®PH510 (PEDOT:PSS) was investigated. Due to a relatively high sheet resistance of PEDOT:PSS, metal grid was designed for large size OLEDs. White OLEDs on PEDOT anode with a size of 5 × 5 cm2 have achieved more than 10 lm/W of power efficiency using a scattering foil. Furthermore, up-scaled devices on 10 × 10 cm2 were also demonstrated. These results showed ZnO:Al and PEDOT are suitable for OLEDs as anode and have high potential as alternative transparent electrode materials.
|
Page generated in 0.0739 seconds