• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study of a novel zinc finger gene cluster TZF and a genomic region flanking the histone H 4 replacement gene H 4r of Drosophila melanogaster

Gu, Wenli. Unknown Date (has links) (PDF)
University, Diss., 2002--Mainz.
2

Einfluss von Arsenverbindungen auf die Funktion der DNA-Reparaturproteine Fpg, XPA und PARP-1

Walter, Ingo January 2007 (has links)
Zugl.: Berlin, Techn. Univ., Diss., 2007
3

Die WRKY-Transkriptionsfaktorfamilie in Arabidopsis thaliana: Untersuchungen zur Spezifität der Bindung an W-Box-Elemente und weiterführende Analyse von drei ausgewählten Vertretern

Ciolkowski, Ingo. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Köln.
4

Charakterisierung der Funktion des Zink-Finger-Transkriptionsfaktors klumpfuss während der Entwicklung des peripheren Nervensystems bei Drosophila melanogaster

Kaspar, Markus. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Köln.
5

Funktionelle Analyse der Zink-Cluster-Transkriptionsfaktorfamilie von Candida albicans durch artifizielle Aktivierung / Functional analysis of the zinc cluster transcription factor family of Candida albicans by artificial activation

Schillig, Rebecca January 2013 (has links) (PDF)
Der Hefepilz Candida albicans gehört zu den opportunistischen Infektionserregern. Er ist Teil der natürlichen Mikroflora der Schleimhäute des Gastrointestinal- und Urogenitaltraktes des Menschen. Bei Störungen des natürlichen Gleichgewichts dieser Flora kann es zu oberflächlichen Mykosen, z. B. der oropharyngealen Candidiasis (Mundsoor), kommen. Besonders immunsupprimierte Patienten, wie AIDS-Patienten, leiden häufig unter immer wiederkehrenden Infektionen, die mitunter auch zu schwerwiegenden Infektionsverläufen, bis hin zu lebensbedrohlichen systemischen Mykosen führen können. Zur Therapie solcher Erkrankungen werden oft Ergosterolbiosyntheseinhibitoren, wie Fluconazol, eingesetzt. Besonders bei wiederkehrenden Infektionen und wiederholender Therapie ist C. albicans in der Lage, gegen diese häufig verabreichten Antimykotika Resistenzen zu entwickeln. Hierbei spielen Zink-Cluster-Transkriptionsfaktoren eine zentrale Rolle. Zink-Cluster-Proteine gehören zu einer pilzspezifischen Familie von Transkriptionsfaktoren, die ein großes Spektrum an zellulären Prozessen regulieren. Die gut charakterisierten Regulatoren Upc2, Tac1 und Mrr1 gehören zu den Zink-Cluster-Transkriptionsfaktoren, die maßgeblich zur Resistenzentwicklung von C. albicans beitragen. Upc2 kontrolliert die Expression vieler Ergosterolbiosynthesegene, besonders die von ERG11, welches für die Zielstruktur des gängigen Antimykotikums Fluconazol kodiert. Tac1 und Mrr1 hingegen regulieren die Expression von Multidrug-Effluxpumpen, den ABC-Transportern CDR1 und CDR2 bzw. dem Major Facilitator MDR1. Gain-of-function-Mutationen in diesen Transkriptionsfaktoren resultieren in einer konstitutiven Überexpression ihrer Zielgene und sind verantwortlich für die Resistenz vieler klinischer Isolate. In dieser Arbeit wurde gezeigt, dass die Fusion von Mrr1 mit der Gal4-Aktivierungsdomäne von Saccharomyces cerevisiae zu einem konstitutiv aktiven Hybridtranskriptionsfaktor führte, der eine MDR1-Überexpression bewirkte und Fluconazolresistenz vermittelte. Dieses Hybridprotein vermittelte sogar eine höhere Resistenz als ein Mrr1 mit natürlich vorkommenden gain-of-function-Mutationen. Analoge Fusionen mit Tac1 und Upc2 resultierten ebenfalls in einer konstitutiven Aktivierung dieser Transkriptionsfaktoren, die einen starken Anstieg der Fluconazolresistenz zur Folge hatte. Daraus ergab sich die Schlussfolgerung, dass dies eine generelle Methode sein könnte, die Zink-Cluster-Transkriptionsfaktoren künstlich zu aktivieren und so ihre biologischen Funktionen zu offenbaren, ohne die genauen Bedingungen für ihre Aktivität zu kennen. Deshalb wurde auf der Basis dieser Strategie eine Bibliothek von C.-albicans-Stämmen konstruiert, in der alle 82 putativen Zink-Cluster-Transkriptionsfaktoren in dieser möglicherweise hyperaktiven Form exprimiert werden. Untersuchungen dieser Bibliothek offenbarten neue Transkriptionsfaktoren, die Fluconazolresistenz vermittelten, aber auch noch unbekannte Regulatoren der Morphogenese und andere Phänotypen konnten beobachtet werden. Um einen tieferen Einblick in die Funktionsweise zu bekommen, wurden die Transkriptionsprofile der vier Transkriptionsfaktoren ermittelt, die in ihrer hyperaktiven Form die höchste Fluconazolresistenz bewirkten. Dabei stellte sich heraus, dass die zwei künstlich aktivierten (*) Regulatoren ZCF34* und ZNC1* die Expression der wichtigsten Multidrug-Effluxpumpe CDR1 stark hochregulierten. Der Transkriptionsfaktor mit dem vorläufigen Namen ZCF34 konnte im Verlauf dieser Arbeit als ein wichtiger Regulator für die CDR1-Expression identifiziert werden. Er ist sowohl an der Aktivierung der Expression von CDR1 beteiligt als auch für die basale CDR1-Promotoraktivität notwendig. Aus diesem Grund wurde er in MRR2 (multidrug resistance regulator 2) umbenannt. Mit der Entdeckung eines neuen Regulators der wichtigsten Multidrug-Effluxpumpe von C. albicans wurde ein wichtiger Beitrag zum Verständnis der Regulation solcher Transporter geleistet. Die Überexpression dieser Pumpen ist einer der häufigsten Resistenzmechanismen in C. albicans. Auf diesem Wege kann Resistenz gegen strukturell völlig unterschiedliche Antimykotika bewirkt werden. Somit stellen sowohl diese Effluxpumpen, als auch deren Regulatoren mögliche Angriffsziele für die Entwicklung neuer oder Weiterentwicklung bereits vorhandener Antimykotika dar. / The yeast Candida albicans is an oppotunistic fungal pathogen, usually a harmless colonizer of mucosal surfaces of the gastrointestinal und urogenital tract of healthy people. If the balance of this microflora is disturbed, it can cause superficial mycoses, like oropharyngeal candidiasis. Especially immunocompromised patients, like AIDS patients suffer from recurrent infections, occasionally causing life-threatening systemic infections. The antifungal agent fluconazole, which inhibits ergosterol biosynthesis, is frequently used to treat Candida-infections. Particularly during long term treatments of recurrent infections, C. albicans can develop resistance to the commonly used antifungal drugs. Zinc cluster transcription factors often play key roles in the development of such resistances. The zinc cluster proteins are a fungus-specific family of transcription factors that regulate a variety of cellular processes. The well characterized regulators Upc2, Tac1 und Mrr1 are among these zinc cluster transcription factors, being significantly involved in mediating drug resistance. Upc2 controls the expression of ergosterol biosynthesis genes, e. g. of ERG11, encoding the target enzyme of fluconazole. Tac1 and Mrr1 regulate the expression of multidrug efflux pumps, the ABC transporters CDR1 and CDR2 and the major facilitator MDR1, respectively. Gain-of-function mutations in these transcription factors result in constitutive overexpression of their target genes and are responsible for drug resistance in many clinical C. albicans strains. In this thesis it could be shown that fusion of the full-length Mrr1 with the Gal4 activation domain from Saccharomyces cerevisiae produced a constitutively active hybrid transcription factor that mediated MDR1 overexpression and increased drug resistance. The hybrid transcription factor exhibited even higher activity than Mrr1 with a naturally occurring gain-of-function mutation. Analogous fusions with Tac1 and Upc2 also resulted in constitutively activated transcription factors that conferred strongly increased drug resistance, suggesting that this might be a generally applicable approach for the artificial activation of zinc cluster transcription factors, which could reveal their biological function without prior knowledge about inducing conditions. Therfore a library of C. albicans strains expressing all 82 predicted zinc cluster transcription factors of this pathogen was constructed, by using this strategy, resulting in strains with potentially hyperactive regulators. Screening of this comprehensive set of strains revealed novel transcription factors mediating drug resistance, but also previously unknown regulators of morphogenesis and other phenotypes. To gain insight into their mechanism of action, transcriptional profiles were determined of the four transcription factors that produced the strongest increase in fluconazole resistance when expressed in a hyperactive form. This analysis revealed that two out of these four artificially activated (*) transcription factors, ZCF34* and ZNC1*, strongly upregulate the expression of the most important multidrug efflux pump CDR1, which could be verified by Northern hybridization. The transcription factor previously named ZCF34 could be identified as a new and important regulator of CDR1, being involved in the activation of CDR1 expression as well as in basal promoter activity of this pump. Therefore it was renamed MRR2 (multidrug resistance regulator 2). The identification of MRR2 as a new regulator of the most important multidrug efflux pump in C. albicans represents a major step forward in understanding the regulation of such transporters. The overexpression of these efflux pumps is one of the most common resistance mechanism in C. albicans, conferring resistance to many structurally and functionally unrelated toxic compounds. Therefore these transporters, as well as their regulators, provide potential tagets of new or further developed antifungal agents.
6

Untersuchungen zur funktionellen Charakterisierung von regulatory-protein T-lymphocyte-1 (rpt-1, Trim 30)

Späth, Kerstin. Unknown Date (has links)
Universiẗat, Diss., 2005--Düsseldorf. / Erscheinungsjahr an der Haupttitelstelle : 2004.
7

Identification of an atypical peptide binding mode of the BTB domain of the transcription factor MIZ1 with a HUWE1-derived peptide / Identifikation eines neuen Bindungsmodus zwischen der BTB-Domäne des Transkriptionsfaktors MIZ1 und eines Peptids aus der HECT-E3-Ligase HUWE1

Orth, Barbara January 2021 (has links) (PDF)
Ubiquitination is a posttranslational modification with immense impact on a wide range of cellular processes, including proteasomal degradation, membrane dynamics, transcription, translation, cell cycle, apoptosis, DNA repair and immunity. These diverse functions stem from the various ubiquitin chain types, topologies, and attachment sites on substrate proteins. Substrate recruitment and modification on lysine, serine or threonine residues is catalyzed by ubiquitin ligases (E3s). An important E3 that decides about the fate of numerous substrates is the HECT-type ubiquitin ligase HUWE1. Depending on the substrate, HUWE1 is involved in different processes, such as cell proliferation and differentiation, DNA repair, and transcription. One of the transcription factors that is ubiquitinated by HUWE1 is the MYC interacting zinc finger protein 1 (MIZ1). MIZ1 is a BTB/POZ (Bric-à-brac, Tramtrack and Broad-Complex/Pox virus and zinc finger) zinc finger (ZF) protein that binds to DNA through its 13 C2H2-type zinc fingers and either activates or represses the transcription of target genes, including genes involved in cell cycle arrest, such as P21CIP1 (CDKN1A). The precise functions of MIZ1 depend on its interactions with the MYC-MAX heterodimer, but also its heterodimerization with other BTB-ZF proteins, such as BCL6 or NAC1. How MIZ1 interacts with HUWE1 has not been studied and, as a consequence, it has not been possible to rationally develop tools to manipulate this interaction with specificity in order to better understand the effects of the interaction on the transcriptional function of MIZ1 on target genes or processes downstream. One aspect of my research, therefore, aimed at characterizing the MIZ1-HUWE1 interaction at a structural level. I determined a crystal structure of the MIZ1-BTB-domain in complex with a peptide, referred to as ASC, derived from a C terminal region of HUWE1, previously named ‘activation segment’. The binding mode observed in this crystal structure could be validated by binding and activity assays in vitro and by cell-based co-IP experiments in the context of N-terminally truncated HUWE1 constructs. I was not able to provide unambiguous evidence for the identified binding mode in the context of full-length HUWE1, indicating that MIZ1 recognition by HUWE1 requires yet unknown regions in the cell. While the structural details of the MIZ1-HUWE1 interaction remains to be elucidated in the context of the full-length proteins, the binding mode between MIZ1BTB and ASC revealed an interesting, atypical structural feature of the BTB domain of MIZ1 that, to my knowledge, has not been described for other BTB-ZF proteins: The B3 region in MIZ1BTB is conformationally malleable, which allows for a HUWE1-ASC-peptide-mediated β-sheet extension of the upper B1/B2-strands, resulting in a mixed, 3 stranded β-sheet. Such β-sheet extension does not appear to occur in other homo- or heterodimeric BTB-ZF proteins, including MIZ1-heterodimers, since these proteins typically possess a pre-formed B3-strand in at least one subunit. Instead, BCL6 co repressor-derived peptides (SMRT and BCOR) were found to extend the lower β-sheet in BCL6BTB by binding to an adjacent ‘lateral groove’. This interaction follows a 1:1 stoichiometry, whereas the MIZ1BTB-ASC-complex shows a 2:1 stoichiometry. The crystal structure of the MIZ1BTB-ASC-complex I determined, along with comparative binding studies of ASC with monomeric, homodimeric, and heterodimeric MIZ1BTB variants, respectively, suggests that ASC selects for MIZ1BTB homodimers. The structural data I generated may serve as an entry point for the prediction of additional interaction partners of MIZ1 that also have the ability to extend the upper β-sheet of MIZ1BTB. If successful, such interaction partners and structures thereof might aid the design of peptidomimetics or small-molecule inhibitors of MIZ1 signaling. Proof-of-principle for such a structure-guided approach targeting BTB domains has been provided by small-molecule inhibitors of BCL6BTB co-repressors interactions. If a similar approach led to molecules that interfere with specific interactions of MIZ1, they would provide intriguing probes to study MIZ1 biology and may eventually allow for the development of MIZ1-directed cancer therapeutics. / Ubiquitinierung ist eine posttranslationale Modifikation mit weitreichendem Einfluss auf eine Vielzahl von zellulären Prozessen, wie proteasomale Degradation, Membrandynamik, Transkription, Translation, Zellzyklus, Apoptose, DNA-Reparatur und Immunität. Grundlage für diese Diversität ist die Möglichkeit, dass Substrate an unterschiedlichen Stellen mit verschiedenen Ubiquitin-Kettentypen modifiziert werden können. Die Substratrekrutierung und -modifikation an Lysin-, Serin oder Threonin Resten wird durch Ubiquitin-Ligasen (E3s) katalysiert. Eine wichtige Ubiquitin-Ligase, die zahlreiche Substrate reguliert, ist die HECT-Ligase HUWE1. Abhängig vom Substrat ist HUWE1 an verschiedenen Prozessen, wie der Zellproliferation und -differenzierung, DNA-Reparatur, aber auch Transkription beteiligt. Ein Transkriptionsfaktor, der von HUWE1 ubiquitiniert wird, ist MIZ1 (MYC interacting zinc finger protein 1). MIZ1 ist ein BTB/POZ (Bric-à-brac, Tramtrack and Broad-Complex/Pox Virus and Zinc finger) Zinkfinger(ZF)-Protein, das über seine 13 C2H2 Zinkfinger an DNA bindet und so die Transkription von verschiedenen Zielgenen aktivieren oder reprimieren kann. MIZ1-Zielgene sind unter anderem am Zellzyklusarrest beteiligt, wie z.B. das Gen P21CIP1 (CDKN1A). Die biologischen Funktionen von MIZ1 werden unter anderem durch seine Interaktion mit dem MYC MAX-Heterodimer, aber auch durch Heterodimerisierung mit anderen BTB ZF Proteinen, wie BCL6 oder NAC1, reguliert. Wie MIZ1 mit der HUWE1-Ligase interagiert, wurde bislang strukturell noch nicht untersucht, weshalb noch nicht gezielt kleine Moleküle zur Manipulation der Interaktion entwickelt werden konnten, um Einfluss auf die transkriptionellen Funktionen von MIZ1 oder seiner Zielgene zu nehmen. Meine Untersuchungen zielten daher unter anderem darauf ab, die MIZ1-HUWE1-Interaktion auf struktureller Ebene zu charakterisieren. Ich konnte eine Kristallstruktur der MIZ1-BTB-Domäne in Komplex mit dem HUWE1-Peptid ASC lösen, dessen Sequenz in der C-terminalen Region von HUWE1 zu finden ist und zuvor als „activation segment“ definiert wurde. Der in dieser Kristallstruktur beobachtete Bindungsmodus konnte durch Bindungs- und Aktivitätsassays in vitro und durch co-IP-Experimente in zellbasierten Assays validiert werden, jedoch nur im Zusammenhang mit N-terminal verkürzten HUWE1 Konstrukten. Es war mir nicht möglich, diesen Bindungsmodus im Kontext des HUWE1-Proteins voller Länge nachzuweisen, was darauf hindeutet, dass bei der MIZ1-Erkennung durch HUWE1 in der Zelle andere Regionen beteiligt sein könnten. Während die strukturellen Details der MIZ1-HUWE1-Interaktion im Kontext der Proteine voller Länge noch aufgeklärt werden müssen, zeigte der Bindungsmodus zwischen MIZ1BTB und ASC ein atpyisches Strukturmerkmal der BTB-Domäne von MIZ1, das meines Wissens bislang in keinem anderen BTB-ZF-Protein beschrieben wurde: Die B3-Region in MIZ1BTB zeigt eine untypische konformationelle Flexibilität, die es erlaubt, dass das HUWE1-ASC-Peptid die B1/B2-Stränge im oberen Segment von MIZ1BTB zu einem 3-strängigen β-Faltblatt erweitert. Eine solche β-Faltblatt-Erweiterung scheint in anderen homo- oder heterodimeren BTB-ZF-Proteinen, einschließlich MIZ1-Heterodimeren, nicht aufzutreten, da diese Proteine typischerweise bereits einen B3-Strang in mindestens einer Untereinheit aufweisen. Stattdessen konnte beobachtet werden, dass Peptidliganden, wie sie von den BCL6 Co-Repressoren SMRT und BCOR abgeleitet wurden, ein β-Faltblatt im unteren Segment von BCL6BTB erweitern, indem sie in der sogenannten „lateral groove“ binden, die in unmittelbarer Nähe des betreffenden β-Faltblattes lokalisiert ist. Während die Interaktion von BCL6BTB mit Co-Repressor-Peptiden eine 1:1 Stöchiometrie zeigt, beobachtete ich für den MIZ1BTB-ASC-Komplex eine 2:1 Stöchiometrie. Die Kristallstruktur des MIZ1BTB-ASC-Komplexes, zusammen mit Bindungsassays, die die Interaktion zwischen ASC und monomerem, homodimerem bzw. heterodimerem MIZ1BTB untersuchten, deuten darauf hin, dass ASC spezifisch mit MIZ1BTB-Homodimeren interagiert. Daher könnten die von mir gewonnenen Strukturinformationen dazu dienen, weitere MIZ1-Bindungspartner vorherzusagen. Falls erfolgreich, könnten die neu identifizierten Interaktionspartner und zugehörige Strukturen dazu genutzt werden, Peptidomimetika und niedermolekulare Inhibitoren zu entwickeln, die spezifische Interaktionen von MIZ1 und die zugehörigen zellulären Prozesse stören und somit als Werkzeuge zum besseren Verständnis der MIZ1 Biologie dienen könnten. Vorbild dabei können zahlreiche niedermolekulare Verbindungen sein, die zur Störung der Co-Repressor-Peptid-Bindung an BCL6BTB entwickelt wurden. Wenn es auf ähnliche Weise gelänge, spezifischen Einfluss auf die transkriptionelle Funktion von MIZ1 zu nehmen, so könnte dies von hohem therapeutischen Nutzen in der Bekämpfung verschiedener Krebsarten sein.

Page generated in 0.0681 seconds