• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 287
  • 118
  • 96
  • 77
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 10
  • 10
  • 10
  • 10
  • 7
  • Tagged with
  • 873
  • 172
  • 164
  • 126
  • 123
  • 92
  • 92
  • 77
  • 77
  • 69
  • 62
  • 61
  • 59
  • 58
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Double-photon decay in zirconium-90 and double internal bremsstrahlung in the beta decay of yttrium-90 and phosphorus-32 /

Vanderleeden, Johannes Cornelis January 1966 (has links)
No description available.
102

High temperature deformation and flow softening in beta zirconium alloys

Heritier, Bernard January 1976 (has links)
No description available.
103

Étude Macro et Microscopique du Comportement Viscoplastique d'Alliages de Zirconium Sollicités Thermo-mécaniquement entre 300°C et 420°C / Macro and microscopic study of the thermo-mechanical behaviour of zirconium alloys between 300 and 420°C

Martin, Rautenberg 11 May 2012 (has links)
Dans l'industrie nucléaire, les composants en alliages de zirconium (Zr) sont utilisés comme éléments de structure dans les assemblages combustibles. La fabrication de ces éléments, leur utilisation en Réacteur à Eau Pressurisée (REP) et leur stockage avant retraitement induisent, entre autres, des sollicitations thermo-mécaniques complexes. Ce travail, grâce à une approche expérimentale multi-échelles, propose de mieux préciser les mécanismes de déformation qui sont à considérer. Pour cela, nous avons mené, sur des échantillons prélevés sur des composants en alliage de Zr destinés à être utilisés en REP, des essais mécaniques (fluage, traction, relaxation) et, d'autre part, des caractérisations microstructurales. Des essais de fluage multiaxial ont ainsi permis de mettre en évidence une anisotropie de comportement, dont l'origine physique a été montrée au moyen d'analyses en diffraction des électrons rétrodiffusés (EBSD) et d'observations en Microscopie Electronique en Transmission (MET). Par une démarche similaire, nous avons aussi identifié la nature des mécanismes accommodant la déformation à l'échelle du grain et à celle du polycristal. Ainsi, les incompatibilités de déformation intergranulaires et les cinétiques d'écoulement viscoplastiques identifiées expérimentalement s'expliquent par l'intervention de processus de traînage d'espèces en solutions par les dislocations, ainsi que l'activation locale de vieillissement dynamique. Enfin, nous avons esquissé des pistes pour l'utilisation de ces résultats dans des modélisations numériques. / In the nuclear industry, zirconium (Zr) based alloys are used as core structural materials in Pressurized Water Reactors (PWRs). The manufacturing of those components, and their environment during or after their use in PWRs induce complex thermo-mechanical loadings. This work, through a multi-scale experimental approach, proposes to focus on the deformation mechanisms that occur during those loadings. Using samples taken from Zr alloy components, we carried out different mechanicals tests (creep tests, tensile tests, relaxation tests) and microstructural characterizations. Results of multiaxial creep tests were correlated to Transmission Electron Microscope (TEM) observations and Electron BackScattered Diffraction (EBSD) analyses. Therefore, the macroscopic creep anisotropy was related to the physical mechanisms observed at the dislocation scale and during mesoscopic measurements. Our conclusions also show that the viscoplastic properties obtained experimentally match a control of dislocation mobility by solute species dragging processes. Further, the intergranular strain incompatibilities that we observed could be explained by local activations of dynamic strain ageing mechanisms. Finally, we used our results to suggest improvements on physically-based modelling techniques.
104

High temperature deformation of zirconium and zirconiumtin alloys.

Luton, Michael John January 1971 (has links)
No description available.
105

Temporal evolution of the microstructures of Al(Sc, Zr) alloys and their influence on mechanical properties

Fuller, Christian B. January 2003 (has links) (PDF)
Thesis (Ph.D.)--Northwestern University, 2003. / Includes bibliographical references (leaves 150-161).
106

Effect of cement type and precision of fit on fracture strength of Procera zirconium oxide copings a thesis submitted in partial fulfillment ... for the degree of Master of Science in Prosthodontics ... /

Duff, Renée E. January 2004 (has links)
Thesis (M.S.)--University of Michigan, 2004. / Includes bibliographical references.
107

Influencia de parametros de precipitacao nas caracteristicas fisicas e quimicas do carbonato de zirconio

BERGAMASCHI, VANDERLEI S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:45:07Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:57Z (GMT). No. of bitstreams: 1 07016.pdf: 7788234 bytes, checksum: f8eff0ec5a7b678c12027aceb93c324d (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
108

Influencia de parametros de precipitacao nas caracteristicas fisicas e quimicas do carbonato de zirconio

BERGAMASCHI, VANDERLEI S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:45:07Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:57Z (GMT). No. of bitstreams: 1 07016.pdf: 7788234 bytes, checksum: f8eff0ec5a7b678c12027aceb93c324d (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
109

Alkali-fusion processes for the recovery of zirconia and zirconium chemicals from zircon sand

Kwela, Zola Nigel 06 March 2006 (has links)
There are two industrial sources of zirconia: zircon and baddeleyite [1-5]. The baddeleyite reserves in Phalaborwa (the world’s major baddeleyite source) are expected to be depleted by the year 2005 [1-3]. This leaves the Russian Baddleyite (Kola Peninsula) and zircon as the only industrial sources of zirconia. The major drawback to zircon use is the large amounts of impurities it is found concentrated with, especially radioactive impurities (Uranium and Thorium) [2-3]. Acid leaching of zircon does not remove these impurities [4-5]. The impurities are usually included in the zircon lattice. The tetragonal structure of zircon with the high coordinated bisdisphenoids ZrO8 and low coordinated tetrahedra SiO4 create a safe (inaccessible and stable) habitat for these impurities [7]. Processes for the recovery of zirconia and zirconium chemicals rely heavily on precipitation or cyrstallisation techniques for purification [8-16]. Precipitation techniques need to be repeated to obtain the required purity. The purity of products from such methods is still suspect, as there still remains a high radioactivity content after purification [2]. The long process time is another disadvantage of these precipitation processes. These factors together are the reason for the high cost of zirconia and zirconium chemicals. Zirconium and its compounds are regarded to be of low toxicity [1-6]. This implies that they have a great potential of replacing numerous high toxic chemicals. Prominent examples are seen in leather tanning and paints. In leather tanning chromium chemicals can be replaced. In paints lead driers and chromium chemicals for corrosion resistance can be replaced. The objective of this study was to characterise and optimise the De Wet’s zirconium extraction processes for the beneficiation of zircon sand into high purity zirconia and zirconium chemicals. However, at each process step some factors were varied e.g. fusion temperature, reactant mole ratios and composition of leach solutions. Attention was also paid to reducing the total number of process steps. The products produced at each step were analysed. Particular attention was given to the fate of the radioactive impurities. Characterisation of the decomposition step, showed that within the zircon tetragonal structure, the SiO4 bisdisphenoids linkages. This was shown by the preference of sodium for the SiO4 tetrahedra. Fusion for 336 hours with periodic intermediate milling proved the preference of sodium for attacking the SiO4 tetrahedra linkages. This selectivity was clearly demonstrated when decomposing zircon in sodium poor(<4 moles NaOH per mol of zircon) and low temperature (e.g. 650°C) reaction conditions. The advantage of fusing at 650°C with a mole (or even two moles) of sodium hydroxide is that it leads to minimal (<5% m/m Na2O) sodium in the insoluble solids after the removal of soluble silicates. This is a solution to alkali fusion processes, as high amounts of water are usually required to wash out the neutralised sodium salt e.g. 50g of NAC1 usually requires a litre of distilled water to reach levels below 600 ppm NA2O. This reaction condition can be employed when synthesising products where low amounts of sodium are required in the final products e.g. when synthesising zirconia for the ceramic industry. When fusing for two hours without the intermediate milling step the following results were observed. The reaction at 850°C when fusing a mole of zircon with two moles of sodium hydroxide, was the most efficient in consuming sodium hydroxide. Near complete zircon decomposition was at 850°C when fusing a mole of zircon with six moles of sodium hydroxide. Characterisation with XRD, Raman and IR spectroscopy was misleading as complex spectra were measured, indicating many different phases present. The inconsistency was partly attributed to non-homogeneity in the samples due to NaOH migration. When fusing for 336 hours with the intermediate milling step the following results were observed. The reaction at 850°C when fusing a mole of zircon with a mole of sodium hydroxide was the most efficient in consuming sodium hydroxide. This reaction condition was able to liberate 0.58 moles of zirconia per mole of sodium hydroxide. The highly improved efficiency was attributed to the formation of phases Na2ZrSiO5, Na4Zr2Si3O12 and SrO2. The process is pseudo-catalytic as it liberates zirconium while showing minimal sodium consumption. Decomposition at 650°C also showed improved efficiency but not as efficient as the 850°C sub-stoichiometric fusion. The improved decomposition was attributed to the polymerisation of the orthosilicate monomers Na4SiO4 to the metasilicate chains Na2SiO3. / Dissertation (MSc (Chemical Technology))--University of Pretoria, 2007. / Chemical Engineering / unrestricted
110

Growth of porous anodic films on zirconium and zirconium alloys in glycerol/fluoride electrolytes

Muratore, Francesca January 2011 (has links)
Anodic films have been produced on zirconium and zirconium alloys potentiostatically (at either 20 or 40 V) in 0.35 M ammonium fluoride in glycerol, with interest in the addition of small amounts of water (up to 5 vol.%) to the electrolyte on their growth, morphologies and compositions. Scanning and transmission electron microscopies have been employed to analyse morphologies of the films, which appeared to be porous under all the investigated conditions.Rutherford backscattering spectroscopy and nuclear reaction analysis, used as techniques to investigate film compositions, disclosed the presence of zirconium, oxygen, fluorine, carbon and nitrogen in the films. The contents of fluorine and oxygen in the films were found to increase and decrease respectively by decreasing the amount of water added to the electrolyte from 5 to 0 vol.%. Moreover, the content of fluorine increased by decreasing the applied formation voltage, from 40 to 20 V, for films formed in electrolytes containing similar amounts of added water.In order to get information on the distribution of the species in the films, cross-sections of selected specimens were produced by focused ion beam and analysed by analytical transmission electron microscopy. Oxide-rich nanotubes were revealed embedded in a fluoride-rich matrix, suggesting that the mechanism of growth of the anodic films is governed by different migration rates of the anionic species in the film base, with F- ions, being the fastest anions. The relative amounts of the oxide-rich and fluoride-rich materials were related to the composition of the electrolyte, with the fluoride regions being less extensive and the oxide-rich nanotubes being thicker-walled by adding small amounts of water. Moreover, nanotubes are constituted of two shells (an outer one surrounding the pores and an inner one located between the outer shell and the matrix), suggesting differences in the composition in these two regions, presumed to be due to the incorporation of carbon species, being the slowest migrating species, in the outer shell. The fluoride-rich matrix chemically dissolved following 1 h immersion of the specimens in the formation electrolytes, promoting the transition from porous to nanotubular morphologies. Ageing of the specimens in deionized water for similar times did not significantly influence the morphologies and compositions of the anodic films.

Page generated in 0.0452 seconds