• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Growth and Characterization of ZnO for the Front Contact of Cu(In,Ga)Se2

Bhatt, Rita 01 January 2000 (has links)
ZnO window layers for CIGS solar cells are grown with a DC sputtering technique instead of a conventional RF sputtering technique. Transparent window layers and buffer layers are sputtered from the Zn target in the presence of Oxygen. The window layer is doped with Aluminum in order to achieve high electrical conductivity and thermal stability. The effect of different sputtering parameters on the electrical and optical properties of the films is elaborately studied. Sets of annealing experiments are also performed. Combinations of different deposition parameters are examined to design the optimum fabrication conditions. We are able to deposit 85% transparent, Al doped ZnO films having 002-axis orientation and 4e-4 ohm-cm resistivity, which is successfully, used on CIGS solar cells. Resistivity of undoped ZnO buffer layers is varied form 10-2 ohm-cm to unmeasurable by varying the sputtering parameters. The performance of a reactively sputtered window layer and a buffer layer have matched the performance of the RF sputtered ZnO on CIGS solar cells. There has been considerable effort to eliminate Chemical Bath Deposition of the CdS buffer layer from CIS solar cell fabrication. The performance of an undoped DC sputtered ZnO layer is examined on Cd free CIGS solar cells. The ZnO buffer layer is directly sputtered on an underlying CIGS material. The performance of Cd free solar cells is highly susceptible to the presence of Oxygen in the sputtering ambient of the buffer layer deposition [6]. As Oxygen is a growth component in reactive sputtering, the growth mechanisms of the DC-sputtered buffer layer are studied to improve the understanding. The performance of all reactively sputtered ZnO devices matched the values reported in the literature and the results for DC sputtered ZnO on Cd-free solar cells were encouraging.

Page generated in 0.0441 seconds