• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zoogloea ramigera in competition and association with proteolytic bacteria and with a closely-related pseudomonad

Cuppels, Diane Adele, January 1969 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1969. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
2

Oxygen diffusion through a pure culture floc of Zoogloea ramigera

Mueller, James A. January 1966 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1966. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
3

Isolation, purification and characterization studies on a deoxyribonucleic acid polymerase from the floc-forming bacterium, Zoogloea ramigera isolate I-16-M /

Pickrum, Harvey Marvin January 1975 (has links)
No description available.
4

Production of extracellular polysaccharide by Zoogloea ramigera and its use as an adsorbing agent for heavy metals

Norberg, Anders. January 1983 (has links)
Thesis (doctoral)--Lund University. / Description based on print version record.
5

Morphological and biochemical studies of Zoogloea ramigera species in pure culture

Crabtree, Koby T. January 1966 (has links)
Thesis (Ph. D.)--University of Wisconsin, 1966. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliography.
6

Respiration rates on various nitrogenous substrates by Zoogloea ramigera: a bacterium found in aerobic phases of sewage treatment

Rich, Linvil Gene January 1951 (has links)
Ph. D.
7

The tolerance of a Rhodococcus drinking water isolate and Zoogloea ramigera to silver nanoparticles in biofilm and planktonic cultures

Gao, Qiao Huan 30 September 2011 (has links)
Spurred by a host of beneficial uses, the global use of nanoparticles is rapidly growing. Silver nanoparticles (Ag NPs) are used widely in consumer products, medicine, and the semiconductor industry. As nanoparticles become more commonly used, the transport of nanoparticles into the environment might negatively affect microorganisms in natural and engineered systems. The effects of Ag NPs on microorganisms have primarily been studied in planktonic or free-swimming cultures, but little work has been done to look at biofilm susceptibility to Ag NPs. This thesis describes bacterial tolerance, or the ability of an organism to survive exposure to an insult, to Ag NPs. The tolerance of planktonic and biofilm cells of the common wastewater treatment bacterium Zoogloea ramigera and a Rhodococcus strain isolated from drinking water was tested. These bacteria were exposed to different concentrations of Ag NPs, ranging from 0 to 25 mg/L, for a period of 5 hours. Results showed decreased tolerance with increasing Ag NP concentrations for both bacterial species. Z. ramigera biofilm cells are slightly more tolerant to Ag NPs than are planktonic cells. On the other hand, Rhodococcus planktonic and biofilm cells exhibit similar tolerance. However, in both cases, biofilm cells do not exhibit a striking protective effect against Ag NPs as compared to planktonic cells. This study shows that even short-term insults with Ag NPs can affect bacteria in engineered systems. A preliminary study of the shedding of free silver ions as a possible mechanism of Ag NP toxicity demonstrated that free silver ions were toxic to Escherichia coli in a 0.14M chloride environment. The data suggest that free silver ions can be pulled into solution from Ag NPs in chloride environments via ligand-promoted dissolution. Further work is needed to examine the antibacterial mechanism of Ag NPs against planktonic and biofilm cells to better understand how the release of nanoparticles into the environment can affect microorganisms in natural and engineered water systems. / text
8

A laboratory study of reduction of the biochemical oxygen demand of synthetic sewage by Zoogloea ramigera

Thompson, Edwin E. January 1951 (has links)
In order to improve the design and to control satisfactorily the operation of the modern sewage disposal and industrial waste treatment plants, a great deal of work remains to be done by competent sanitary engineers, biologists, and chemists. It is the general belief that the stabilization of organic wastes is a biological phenomena. This indicates that a concentrated study of the organisms that are responsible for such stabilization should be undertaken and the part that each organism contributes should be evaluated The lack of specific knowledge has resulted in "rule of thumb" methods of design and control. A considerable amount of work on the biology of sewage disposal has been done by the New Jersey Experiment Station (4)(5)(8); by C.T. Butterfield and Elsie Wattie of the U.S. Public Health Services (10) (13) and by others, but a concentrated effort is still needed. James B. Lackey (1), has done an excellent job in summing up the work accomplished to date in the field of sanitary biology in his article “Sewage Treatment Biology”. In this article, Dr. Lackey lists four things that must be known before a clear picture can be presented on the subject of sewage and waste treatment. These points are as follows: (1) More precise information on the species of each group of organisms working in treatment plants. (2) The relative abundance of each so that no important (numerically or volumetrically) organism is neglected. (3) The range-not optimum- of environmental conditions under which the organism works. (4) The work accomplished by the organisms - whether a small segment of the stabilizing process, or a large one. Gerald A. Rohlick (2), in discussing Lackey’s article, places special emphasis on additional experimental work that should be done on the activities of protozoa and higher forms of life. The editors of Savage Works Journal (3) have summed up the problem in the following statement, “When we can answer completely the what, how, who, when and why of the organisms that populate our digestors, aerators and trickling filters, we shall simultaneously solve the problems of treatment plant design and operation that are of present concern”. In an effort to contribute something to the fund of knowledge of sanitary biology, the author undertook an investigation based on the for needs suggested by Lackey. The investigation is divided into three major parts: (l) A preliminary investigation; (2) the construction of a pure culture testing apparatus; and (3) the testing of a pure culture of organisms. The complete investigation is confined to studies of the organisms found in the aerobic phase of treatment, the precise source being the trickling filter at the Virginia Polytechnic Institute sewage disposal plant. This confinement of purpose was to allow the investigator to conduct a concentrated study of a single phase of treatment. The preliminary investigation consisted of taking frequent samples from the trickling filter and examining them under the microscope. The predominate organisms were noted and the development of pure cultures of each was attempted. The construction of a pure culture filter consisted of an attempt to duplicate in the laboratory as nearly as conditions would allow, the actual conditions that exist in the trickling filter at the plant, while at the same time observing pure culture requirements and techniques. The testing of the organisms consisted of measuring the amount of purification exerted by the organism on a synthetic sewage as it passed through the filter. The results of this investigation should answer two questions: First, can a pure culture apparatus be constructed and operated with such success that it can be used as a standard device for determining in the laboratory the degree of purification exhibited by organisms in pure culture, and Second, is it possible for a pure culture of organism to carry on the purification process. The answer to the second question will, of course, depend on a positive answer to the first question. / Master of Science

Page generated in 0.0566 seconds