Spelling suggestions: "subject:"zooplankton communities"" "subject:"zooplankton eommunities""
1 |
Zooplankton Community Composition in Natural and Artificial Estuarine Passes of Lake Pontchartrain, LouisianaKerisit, Arnaud 06 August 2018 (has links)
I assessed the composition of zooplankton communities at the three tidal inlets connecting Lake Pontchartrain to Lake Borgne and subsequently to the Gulf of Mexico. The objectives of my research were to better understand the factors contributing to both spatial and temporal differences in zooplankton communities at the three locations. Monthly samplings of the neuston were conducted from September 2009 until April 2011 and then again from September 2012 until May 2013. Sampling consisted of triplicate tows using SeaGear “Bongo” nets. Water quality data along with water turbidity were recorded at each site and during each sampling effort. All specimens collected during the survey were quantified and identified to the lowest taxonomical unit. The results indicated that there were significant differences among the aquatic invertebrate communities composition among the three sites groups averaged across months (ANOSIM, R= 0.162, p = 0.001). The outcomes from this study could have strong implications for fisheries management and will provide a baseline for future research.
|
2 |
Responses of zooplankton community structure and ecosystem function to the invasion of an invertebrate predator, Bythotrephes longimanusStrecker, Angela Lee 20 July 2007 (has links)
Freshwater ecosystems face unprecedented levels of human-induced stresses and it is expected that the invasion of non-indigenous species will cause the greatest loss of biodiversity in lakes and rivers worldwide. Bythotrephes longimanus is a predatory invertebrate that invaded North America in the early 1980s, first being detected in the Great Lakes, and then moving to a number of inland lakes in Ontario and the northern United States. Using experimental and survey-based approaches, I tested several hypotheses concerning the effects of Bythotrephes on native zooplankton community structure and function. My results indicate that Bythotrephes reduces total abundance, biomass, and richness of zooplankton, especially cladoceran taxa, throughout the ice-free season. As a result of high predation pressure by the invader, total seasonal and epilimnetic zooplankton production was also substantially reduced in invaded lakes, which may have important consequences for the transfer of energy to fish and other taxa that feed on zooplankton. Interestingly, there was some evidence that zooplankton shifted their reproduction in time and space to avoid Bythotrephes, which may buffer the effects of the invader on food web functioning. Other measures of ecosystem function were relatively unaffected by the invasion of Bythotrephes. In addition, Bythotrephes may interact in unexpected ways with other anthropogenic stressors, and act to slow down the process of recovery by preying on species that maintain community abundance during acidification, but also affecting species attempting to recolonize historically acidified lakes. Although dispersal of zooplankton may maintain some of the ecosystem functions provided by zooplankton communities, loss of biodiversity may be a permanent result of invasion. The effects of the continued spread of invasive species across the landscape may be profound, as the invader Bythotrephes has demonstrably altered zooplankton communities and may reduce the ability of freshwater ecosystems to respond to future environmental change and maintain ecosystem functioning. / Thesis (Ph.D, Biology) -- Queen's University, 2007-07-19 14:56:57.102
|
Page generated in 0.0698 seconds