• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Factors governing zoysiagrass response to herbicides applied during spring green-up

Craft, Jordan Michael 29 March 2021 (has links)
Zoysiagrass (Zoysia spp.) is utilized as a warm-season turfgrass because of its density, visual quality, stress tolerance, and reduced input requirements. Turf managers often exploit winter dormancy in warm-season turfgrass to apply nonselective herbicides such as glyphosate and glufosinate to control winter annual weeds. Although this weed control strategy is common in bermudagrass (Cynodon spp.), it has been less adopted in zoysiagrass due to unexplainable turf injury. Many university extension publications recommend against applying nonselective herbicides to dormant zoysiagrass despite promotional language found in a few peer-reviewed publications and product labels. Previous researchers have used vague terminology such as "applied to dormant zoysiagrass" or "applied prior to zoysiagrass green-up" to describe herbicide application timings. These ambiguous terms have led to confusion since zoysiagrass typically has subcanopy green leaves and stems throughout the winter dormancy period. No research has sought to explain why some turfgrass managers are observing zoysiagrass injury when the literature only offers evidence that these herbicides do not injure dormant zoysiagrass. We sought to explore various herbicides, prevailing temperatures surrounding application, heat unit based application timings, and spray penetration into zoysiagrass canopies as possible contributors to zoysiagrass injury. The results indicated that a wide range of herbicides may be safely used in dormant zoysiagrass. However, as zoysiagrass begins to produce more green leaves, herbicides such as metsulfuron, glyphosate, glufosinate, flumioxazin, and diquat become too injurious. Glufosinate was consistently more injurious regardless of application timing than glyphosate and other herbicides. When temperatures were 10 °C for 7 d following treatment, a delayed effect of glyphosate and glufosinate effect on digitally-assessed green cover loss was noted on zoysiagrass sprigs. In subsequent studies on turf plugs, a 14-d incubation period at 10 °C reduced glyphosate but not glufosinate effects on turf green color reduction. Glyphosate applied at 125, and 200 GDD5C can safely be applied to zoysiagrass while glufosinate applied at the same timings caused inconsistent and often unacceptable zoysiagrass injury in field studies conducted at Blacksburg, VA, Starkville, MS, and Virginia Beach, VA. Zoysiagrass green leaf density was described as a function of accumulated heat units consistently across years and locations but variably by turf mowing height. Turf normalized difference vegetative index was primarily governed by green turf cover but reduced by herbicide treatments, especially when applied at greater than 200 GDD5C. Substantial spray deposition occurred to subcanopy tissue regardless of nozzle type, pressure and height above the zoysiagrass canopy based on spectrophotometric assessment of a colorant admixture. However, increasing nozzle height above the turf canopy and avoiding air induction type nozzles significantly reduced the percentage of green tissue exposed at lower canopy levels. Absorption of radio-labeled glyphosate and glufosinate was up to four times greater when exposed to zoysiagrass stems compared to leaves. Glyphosate translocated more than glufosinate and both herbicides moved more readily from stem to leaf than from leaf to stem / Doctor of Philosophy / Zoysiagrass (Zoysia spp.) is utilized as a warm-season turfgrass because of its density, visual quality, stress tolerance, and reduced input requirements. Being that zoysiagrass is a warm-season turfgrass, it enters a dormancy period during the winter months. During this period, zoysiagrasses' active growth is halted, and leaves lose their green color and turn a golden-brown color. The winter dormancy period presents turfgrass managers with a unique opportunity to apply nonselective herbicides such as glyphosate and glufosinate to control a broad spectrum of winter annual weeds. Although this weed control strategy is common in bermudagrass (Cynodon spp.), it has been less adopted in zoysiagrass due to turfgrass managers observing unexplainable turfgrass injury. Many university extension publications recommend against applying nonselective herbicides to dormant zoysiagrass despite language found in peer-reviewed publications and product labels suggesting they could be safely applied. Previous researchers have used vague terminology such as "applied to dormant zoysiagrass" or "applied prior to zoysiagrass green-up" to describe herbicide application timings. These terms have led to confusion about when to make these applications since zoysiagrass typically has subcanopy green leaves and stems throughout the winter dormancy period. No research has sought to explain why some turfgrass managers observe zoysiagrass injury when the literature only offers evidence that these herbicides do not injure dormant zoysiagrass. Research projects were designed to explore various herbicides, temperatures surrounding herbicide applications, application timings, and spray penetration into zoysiagrass canopies as possible contributors to zoysiagrass injury. The results indicated that a wide range of herbicides may be safely used in dormant and semidormant zoysiagrass. However, as zoysiagrass begins to produce more green leaves and stems, herbicides such as metsulfuron, glyphosate, glufosinate, flumioxazin, and diquat become too injurious and should be avoided. Across multiple research studies, glufosinate was consistently more injurious regardless of application timing than glyphosate and other herbicides. When temperatures were 10 °C for 7-d following treatment, it delayed zoysaigrass response to glyphosate and glufosinate. In a subsequent study, when temperatures were at 10 °C for a 14-d period, glyphosate and the nontreated reached 50% green cover at the same time, which suggests cold temperatures could mitigate glyphosate injury on zoysiagrass over a 14-d period. The 10 ° temperature only delayed glufosinate injury on zoysiagrass, and no safening was observed. The results also indicated that as temperatures increased, glyphosate and glufosinate rate in which injury was observed increased on the zoysiagrass. Glyphosate applied at 125, and 200 GDD5C can safely be applied to zoysiagrass while glufosinate applied at the same timings caused inconsistent and often unacceptable zoysiagrass injury in field studies conducted at Blacksburg, VA, Starkville, MS, and Virginia Beach, VA. Zoysiagrass injury increased when glyphosate and glufosinate were applied later into the spring when more green leaves were present regardless of location. Accumulated heat units and zoysiagrass green leaf density were closely related, indicating that accumulated heat units could be a useful tool for turfgrass managers to track zoysiagrass spring green-up. Substantial spray deposition was found on subcanopy zoysiagrass leaves and stems regardless of nozzle type, pressure, and height above the zoysiagrass canopy based on recovered colorant at the upper, middle and lower levels of the zoysiagrass canopy. However, avoiding air induction-type nozzles and raising spray height may slightly decrease penetration of spray droplets into a zoysiagrass subcanopy, but a large percentage of droplets still reached the middle and lower canopy layers in this research. Absorption of radio-labeled glyphosate and glufosinate was up to four times greater when applied directly to zoysiagrass stolen compared to leaves. Glyphosate translocated more than glufosinate, and both herbicides moved more readily from stem to leaf than from leaf to stem. These data suggest limiting the number of green zoysiagrass leaves at application would be an effective method to avoid injury zoysiagrass when applying nonselective herbicides

Page generated in 0.072 seconds