• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engineering analysis of low enriched uranium fuel using improved zirconium hydride cross sections

Candalino, Robert Wilcox 30 October 2006 (has links)
A neutronic and thermal hydraulic analysis of the 1-MW TRIGA research reactor at the Texas A&M University Nuclear Science Center using a new low enriched uranium fuel (named 30/20 fuel) was completed. This analysis provides safety assessment for the change out of the existing high enriched uranium fuel to this high-burnup, low enriched uranium fuel design. The codes MCNP and Monteburns were utilized for the neutronic analysis while the code PARET was used to determine fuel and cladding temperatures. All of these simulations used improved zirconium hydride cross sections that were provided by Dr. Ayman Hawari at North Carolina State University. The neutronic and thermal analysis showed that the reactor will operate with approximately the same fuel lifetime as the current high enriched uranium fuel and stay within the thermal and safety limits for the facility. It was also determined that the control rod worths and the temperature coefficient of reactivity would provide sufficient negative reactivity to control the reactor during the fuel’s complete lifetime. An assessment of the fuel’s viability for use with the Advanced Fuel Cycle Initiative’s Reactor Accelerator Coupling Experiments program was also performed. The objective of this study was to confirm the continued viability of these experiments with the reactor operating using this new fuel. For these experiments, the accelerator driven system must produce fission heating in excess of 1 kW when driven by a 20 kW accelerator system. This criterion was met using the new fuel. Therefore the change out of the fuel will not affect the viability of these experiments.
2

Metallic residues after hydriding of zirconium

Andersson, Patrik, Arvhult, Carl-Magnus January 2012 (has links)
As a part of the production of nitride nuclear fuel for use in fast nuclear reactors, zirconium is hydrided followed by nitriding and mixing with uranium nitride. This work concludes a study of unwanted metallic particles present in a powder that is supposed to be a zirconium hydride. Sponge zirconium was hydrided at different temperatures and different time intervals, and the resulting hydride was milled into a powder. The powders were analyzed using SEM and XRD after which the powders were pressed into pellets for light optical microscopic study. The primary goals were determination of the structure of the particles and thereafter elimination of them. It was seen that hydriding at 500 C results in less metal particles but more experiments need to be conducted to confirm this.

Page generated in 0.0132 seconds