Spelling suggestions: "subject:"r22 (233)"" "subject:"r22 (2223)""
1 |
Estudo da sinterização de pós nanocristalinos de ZrO2 tetragonal estabilizado com Y2O3 / Comparative study of the sintering of nanostructured and microstructured post tetragonal ZrO2 stabilized with Y2O3Palmeira, Alexandre Alvarenga 27 June 2012 (has links)
Neste trabalho, foi estudada a sinterização de Nanoestruturas de zircônia estabilizada com ítria, ZrO2-Y2O3. Pós de ZrO2-3%mol de Y2O3 com tamanhos nanométricos e área superficial específica de 16,2 m2/g, foram compactados uniaxialmente em pressões variando entre 12,3MPa e 73,5MPa. Nestas pressões, as amostras compactadas atingiram densidade à verde entre 33% e 44,3%. Os compactos foram sinterizados por dilatometria de 1.250ºC até 1.4000C e os resultados indicaram que a temperatura de início de densificação está próxima a 1.0000C, independente da pressão de compactação aplicada. Temperaturas da ordem de 1.4000C são necessárias para a densificação total do compacto. Comparativamente pós microestruturados de ZrO2-3%mol Y2O3 (área superficial de 7,0 m2/g), foram compactados a 73,5MPa e alcançou densidade a verde de 44,2%. Este material apresentou início da retração próximo a 1.2000C, sugerindo que o uso de pós nanoestruturados reduziu a temperatura de sinterização em 2000C. A sinterização convencional dos pós nanoestruturado foi realizada em temperaturas entre 1.2500C e 1.4000C, com patamares entre 2 e 16h. Os pós microestruturados foram submetidos à sinterização em temperaturas de até 1.6000C, com os mesmos patamares. Os resultados indicaram que em todas as condições de sinterização e indiferentemente do pó utilizado, apenas a fase ZrO2 tetragonal foi encontrada. Além disso, a densidade relativa (DR) dos nanopós variou entre 92%(1.2500C-0h) e superior a 99%(acima de 1.3500C- 4h). Análises microestruturais indicaram a presença de grãos refinados com tamanho médio de 0,18?m (DR=92%,) para nanopós sinterizados a 1.2500C-0h, e tamanho médio de 0,95?m (DR=100%, 1.4000C-16h). Os pós micrométricos apresentaram tamanho de grão médio de 0,39?m (DR=98,8%) para cerâmicas sinterizadas a 1.5300C-0h e tamanho de grão médio de 1,84?m (DR=100%) para cerâmicas sinterizadas a 1.600-0h. Os expoentes de crescimento de grão calculados foram da ordem de 2,8 e 2,3 para. nanoparticulas e microparticulas, respectivametne, indicando que mecanismo de difusão pelos contornos de grão foi preponderante nos materiais estudados. Os valores de energia de ativação para o crescimento de grão calculados foram de 141,3kJ/mol e 244,7kJ/mol, respectivamente, indicando que os pós micrométricos necessitam de maior consumo energético para promover o crescimento de grão. Os resultados são discutidos em função de associar os fenômenos de densificação e crescimento de grão com o tamanho das partículas utilizadas. / We studied the sintering of nanoparticles of yttria stabilized zirconia, ZrO2-Y2O3. Powders of ZrO2-Y2O3 3 mol% with nanometric sizes and specific surface area of 16.2 m2/g, were uniaxially compacted at pressures ranging between 12.3 MPa and 73.5 MPa. Such pressures, the compressed samples reached the green density between 33% and 44.3%. The compacts were sintered by dilatometry up 1.400ºC and the results indicated that the onset temperature of densification is next to 1.000ºC, regardless of the compaction pressure applied. Temperatures of 1.400ºC are required to complete the densification of the compact. Compared microparticulate powders of ZrO2-Y2O3 3 mol% (specific surface area of 7.0 m2/g) were compressed to 73.5 MPa and green density reached 44.2%. This material exhibited the beginning of the next retraction 1.200ºC, suggesting that the use of powder nanopatticulados reduced sintering temperature of 200ºC. The conventional sintering of nanoparticle powders was undertaken at temperatures between 1.400ºC and 1.250ºC, with levels between 2 and 16h. The microparticulate powders were subjected to sintering at temperatures up to 1.600ºC with the same levels. The results indicated that under all conditions, and sintering the powder used interchangeably, only tetragonal ZrO2 phase was found. Furthermore, the relative density (RD) of nanoparticles ranged from 92% (1.250ºC- 0h) and greater than 99% (above 1.350ºC-4h). Microstructural analysis indicated the presence of refined grains with average size of 0.18 ? m (DR = 92%) for nanoparticles sintered at 1.250ºC-0h, and average size of 0.95 ?m (DR = 100%, 1.400ºC -16h). The powders were micron average grain size of 0.39 ?m (DR = 98.8%) to the sintered ceramic 1.530ºC-0h and the average grain size of 1.84 ?m (DR = 100%) of sintered ceramics the 1.600 ºC-0h. The grain growth exponents calculated were the order of 2.8 and 2.3 for nanoparticles and microparticles, respectively, and indicating that the mechanism of grain boundary diffusion was predominant in the studied materials. The values of activation energy for the grain growth were calculated 141.3 kJ/mol and 244.7 kJ/mol, respectively indicating that the powder micrometric require more energy to promote grain growth. The results are discussed in terms of the associated phenomena of densification and grain growth in the particle size used.
|
2 |
Estudo da sinterização de pós nanocristalinos de ZrO2 tetragonal estabilizado com Y2O3 / Comparative study of the sintering of nanostructured and microstructured post tetragonal ZrO2 stabilized with Y2O3Alexandre Alvarenga Palmeira 27 June 2012 (has links)
Neste trabalho, foi estudada a sinterização de Nanoestruturas de zircônia estabilizada com ítria, ZrO2-Y2O3. Pós de ZrO2-3%mol de Y2O3 com tamanhos nanométricos e área superficial específica de 16,2 m2/g, foram compactados uniaxialmente em pressões variando entre 12,3MPa e 73,5MPa. Nestas pressões, as amostras compactadas atingiram densidade à verde entre 33% e 44,3%. Os compactos foram sinterizados por dilatometria de 1.250ºC até 1.4000C e os resultados indicaram que a temperatura de início de densificação está próxima a 1.0000C, independente da pressão de compactação aplicada. Temperaturas da ordem de 1.4000C são necessárias para a densificação total do compacto. Comparativamente pós microestruturados de ZrO2-3%mol Y2O3 (área superficial de 7,0 m2/g), foram compactados a 73,5MPa e alcançou densidade a verde de 44,2%. Este material apresentou início da retração próximo a 1.2000C, sugerindo que o uso de pós nanoestruturados reduziu a temperatura de sinterização em 2000C. A sinterização convencional dos pós nanoestruturado foi realizada em temperaturas entre 1.2500C e 1.4000C, com patamares entre 2 e 16h. Os pós microestruturados foram submetidos à sinterização em temperaturas de até 1.6000C, com os mesmos patamares. Os resultados indicaram que em todas as condições de sinterização e indiferentemente do pó utilizado, apenas a fase ZrO2 tetragonal foi encontrada. Além disso, a densidade relativa (DR) dos nanopós variou entre 92%(1.2500C-0h) e superior a 99%(acima de 1.3500C- 4h). Análises microestruturais indicaram a presença de grãos refinados com tamanho médio de 0,18?m (DR=92%,) para nanopós sinterizados a 1.2500C-0h, e tamanho médio de 0,95?m (DR=100%, 1.4000C-16h). Os pós micrométricos apresentaram tamanho de grão médio de 0,39?m (DR=98,8%) para cerâmicas sinterizadas a 1.5300C-0h e tamanho de grão médio de 1,84?m (DR=100%) para cerâmicas sinterizadas a 1.600-0h. Os expoentes de crescimento de grão calculados foram da ordem de 2,8 e 2,3 para. nanoparticulas e microparticulas, respectivametne, indicando que mecanismo de difusão pelos contornos de grão foi preponderante nos materiais estudados. Os valores de energia de ativação para o crescimento de grão calculados foram de 141,3kJ/mol e 244,7kJ/mol, respectivamente, indicando que os pós micrométricos necessitam de maior consumo energético para promover o crescimento de grão. Os resultados são discutidos em função de associar os fenômenos de densificação e crescimento de grão com o tamanho das partículas utilizadas. / We studied the sintering of nanoparticles of yttria stabilized zirconia, ZrO2-Y2O3. Powders of ZrO2-Y2O3 3 mol% with nanometric sizes and specific surface area of 16.2 m2/g, were uniaxially compacted at pressures ranging between 12.3 MPa and 73.5 MPa. Such pressures, the compressed samples reached the green density between 33% and 44.3%. The compacts were sintered by dilatometry up 1.400ºC and the results indicated that the onset temperature of densification is next to 1.000ºC, regardless of the compaction pressure applied. Temperatures of 1.400ºC are required to complete the densification of the compact. Compared microparticulate powders of ZrO2-Y2O3 3 mol% (specific surface area of 7.0 m2/g) were compressed to 73.5 MPa and green density reached 44.2%. This material exhibited the beginning of the next retraction 1.200ºC, suggesting that the use of powder nanopatticulados reduced sintering temperature of 200ºC. The conventional sintering of nanoparticle powders was undertaken at temperatures between 1.400ºC and 1.250ºC, with levels between 2 and 16h. The microparticulate powders were subjected to sintering at temperatures up to 1.600ºC with the same levels. The results indicated that under all conditions, and sintering the powder used interchangeably, only tetragonal ZrO2 phase was found. Furthermore, the relative density (RD) of nanoparticles ranged from 92% (1.250ºC- 0h) and greater than 99% (above 1.350ºC-4h). Microstructural analysis indicated the presence of refined grains with average size of 0.18 ? m (DR = 92%) for nanoparticles sintered at 1.250ºC-0h, and average size of 0.95 ?m (DR = 100%, 1.400ºC -16h). The powders were micron average grain size of 0.39 ?m (DR = 98.8%) to the sintered ceramic 1.530ºC-0h and the average grain size of 1.84 ?m (DR = 100%) of sintered ceramics the 1.600 ºC-0h. The grain growth exponents calculated were the order of 2.8 and 2.3 for nanoparticles and microparticles, respectively, and indicating that the mechanism of grain boundary diffusion was predominant in the studied materials. The values of activation energy for the grain growth were calculated 141.3 kJ/mol and 244.7 kJ/mol, respectively indicating that the powder micrometric require more energy to promote grain growth. The results are discussed in terms of the associated phenomena of densification and grain growth in the particle size used.
|
3 |
Revestimento cerâmico aplicado como barreira térmica em componentes automotivosMoraes, Denison Angelotti 07 June 2018 (has links)
Submitted by Marta Toyoda (1144061@mackenzie.br) on 2018-09-04T17:03:54Z
No. of bitstreams: 2
Dênison Angelotti Moraes.pdf: 4087093 bytes, checksum: 92e8923c2697fbf1a44b31c6c7fb05d1 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2018-09-19T18:27:52Z (GMT) No. of bitstreams: 2
Dênison Angelotti Moraes.pdf: 4087093 bytes, checksum: 92e8923c2697fbf1a44b31c6c7fb05d1 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-09-19T18:27:52Z (GMT). No. of bitstreams: 2
Dênison Angelotti Moraes.pdf: 4087093 bytes, checksum: 92e8923c2697fbf1a44b31c6c7fb05d1 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-06-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Automotive components are always in development, aiming to improve performance and
quality, either by reducing costs, market need, increased sales and productivity or some new
environmental or safety legislation. In the last years the environmental theme has gained interest
and has become central to vehicles that use fossil fuels, especially Diesel oil, and must comply
with new emission laws. For this, new engines and exhaust systems and gas filtration have been
developed, such as catalytic converters. The upcoming legislation, called PROCONVE P8,
restricts the values of nitrous oxides (NOx) and particulate matter to very low values. In order
to achieve these values, the post-treatment system called the ATS (After Treatment System)
was developed. In order for the process to reduce pollutants to be made within the ATS, the
exhaust gases burned in the combustion process inside the engine must be between 450 and 550
ºC. The burned gases, or exhaust gases, are piped to the catalyst by metal tubing. In this work
was proposed the use of 8% by weight (ZrO2-Y2O3) stabilized Zirconia oxide ceramic, known
as YSZ (Ytria Stabilized Zirconia), or 8YSZ, known as TBC (Thermal Barrier Coating). The
TBC was studied as a coating of exhaust pipe, through analytical calculation and CFD
(Computer Fluid Dynamics). The results showed that the YSZ is a potential material for the
studied application, as well as for applications where the thermal barrier theme is relevant. / Componentes automotivos estão sempre em desenvolvimento, seja objetivando a melhoria de
performance e qualidade, seja pela redução de custos, necessidade de mercado, aumento de
vendas e produtividade ou alguma nova legislação ambiental ou de segurança. Nos últimos anos
o tema ambiental ganhou corpo e passou a ser central para os veículos que utilizam
combustíveis fósseis, em especial o óleo Diesel, devendo atender a novas legislações de
emissão. Para isso, novos motores e sistemas de exaustão e filtragem dos gases foram
desenvolvidos, como os conversores catalíticos. A próxima legislação que entrará em vigor,
chamada de PROCONVE P8 restringe os valores de óxidos nitrosos (NOx) e material
particulado a valores muito baixos. Para que esses valores sejam atingidos foi desenvolvido o
sistema de pós-tratamento de gases chamado de ATS (After Treatment System). Para que o
processo de redução dos agentes poluidores seja feito dentro do ATS, os gases de escapamento
queimados no processo de combustão dentro do motor devem estar a temperatura entre 450 e
550ºC. Os gases queimados, ou gases de exaustão, são conduzidos por tubulação metálica até
o catalisador. Neste trabalho foi proposta a utilização de revestimento cerâmico de óxido de
Zircônia estabilizado com Ítria a 8% em peso (ZrO2-Y2O3), conhecido como YSZ (Ytria
Stabilized Zirconia), ou ainda 8YSZ, conhecido como TBC (Thermal Barrier Coating). Foi
estudado o TBC como revestimento de tubulação de escapamento, por meio de cálculo
analítico e por CFD (Computer Fluid Dynamics). Os resultados mostraram que o YSZ é um
material de potencial para a aplicação estudada, bem como para aplicações onde o tema barreira
térmica seja relevante.
|
Page generated in 0.0337 seconds