• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Processamento de aço inoxidável dúplex por extrusão em canal angular

Farias, Fernanda Aparecida 11 December 2009 (has links)
Made available in DSpace on 2017-07-21T20:42:32Z (GMT). No. of bitstreams: 1 Fernanda Aparecida Farias.pdf: 6839448 bytes, checksum: d86819dd1de8464678930b61469c884f (MD5) Previous issue date: 2009-12-11 / A duplex stainless steel with austenitic–ferritic structure, type S32205/S31803 was submitted to equal channel angular pressing, whose is based on very severe plastic deformation, at relatively low temperature, with no change in the dimensions along transversal section of the material. The processed material was heat treated at 1000° and 1200°C during 7.5, 15, 30 and 60 minutes, in order to evaluate the recovery aspects and recrystallization steps of the severely deformed duplex steel. The die was manufacturing from SAE 1045 steel (cemented, quenched and annealed) and heat treated and the plungers from tool steel. The extrusions were conducted at room temperature, using a universal type mechanical test machine, according three different pressing speeds: 1.5, 6.0 and 12.0 mm/min. The processing stress increase continuously during extrusion by friction forces between sample and die walls and very high pressing stress level was reached. The results show the increase of stress according to increase of speed processing. For 1,5 mm/min processing speed, the second pass could be done with maximum reached stress close to 3GPa. The friction forces promoted a very heterogeneous deformations process along the samples sections with increase of hardness from 257HV (start material) to 575HV (highest deformed point). This effect was observed by grains morphology and orientations changes after processing and along the sample dimensions. In the as heat treated samples surfaces two distinct structures type formation was verified with small surfaces positioned with well defined angles near of 90° and 109° between itself. The region with 90° between surfaces show a lot of cubic form structure probably as a consequence of dislocation pile up annihilation on the surface of body-centered-cubic phase (ferrite). In this crystalline structure, the slip system occurs mainly in the {110} planes which have 90º between then. In another side, the slip planes of face-centered-cubic structure slip systems (planes {111}) make 109º angles between then and consequently, dislocation annihilation on the surface may result in structures with this angles on the austenite regions. Sample surface observations detected “roof like” morphology with a well defined near 109º structures which suggest the dislocation annihilation on austenite. Another structure detected on the sample surface was the cold induced martensite. The preliminary evaluation of recrystallization of some processed and treated samples, at 1000°C for 7,5, 15 and 30 minutes identified located points of recrystallization in the grain contours. With increase of the time of heat treatment from 7,5 to 15 minutes, increase of recrystallization nuclei was detected, whereas after treatment of 30 minutes verifies increase of the size of crystals formed without expressive increase of the number of nucleis. / Este trabalho tem por objetivo processar um aço inoxidável dúplex de estrutura austenítica-ferrítica, tipo UNS S32205/S31803, através da extrusão em canal angular (ECA) e caracterizar o aço processado. O princípio da ECA está baseado na aplicação de uma deformação plástica severa, a uma temperatura relativamente baixa, sem nenhuma mudança nas dimensões da seção transversal do material. A matriz utilizada na extrusão foi construída a partir de um aço 1045, cementado e temperado, e os punções de aço ferramenta. A extrusão foi realizada a temperatura ambiente usando uma máquina de ensaios mecânicos, em três velocidades diferentes de aplicação da pressão de extrusão: 1,5, 6,0 e 12 mm/min. A tensão necessária para realizar a extrusão aumentou continuamente ao longo do processamento, atingindo valores próximos 3GPa. Isto é devido, principalmente, à força de atrito entre o corpo de prova e as paredes o canal da matriz. Os resultados também mostram que o aumento da tensão atingida durante o processamento está relacionado à velocidade de processamento e número de passes. A força de atrito promoveu grande heterogeneidade de deformação ao longo das seções das amostras com aumento de dureza de 257HV (material recebido) para 575HV(ponto que sofreu maior deformação). Este efeito foi observado pela morfologia e mudança de orientação dos grãos ao longo das dimensões da amostra processadas. Após o processamento, algumas amostras do material foram termicamente tratadas a 1000° e 1200°C por períodos 7,5, 15, 30 e 60 minutos. Na superfície das amostras processadas por 2 passes de ECA, a temperatura ambiente, com velocidade de 1,5 mm/min. e posterior tratamento térmico a 1200°C por 60 min, foi verificado formação de dois tipos de estruturas distintas com pequenas superfícies posicionadas com ângulos de 90° e ângulos próximos a 109° bem definidos entre si. A região de 90° entre as superfícies mostra uma estrutura predominante de formas cúbicas, provavelmente em conseqüências da aniquilação de empilhamento de discordância na superfície cúbica de corpo centrado da fase ferrita. Na estrutura cristalina, o sistema de deslizamento ocorre principalmente nos planos {110}, os quais têm ângulos de 90° entre si. Por outro lado, os planos de deslizamento da estrutura cúbica de face centrada, {111}, formam ângulos próximos a 109° entre eles e consequentemente, a aniquilação de discordância na superfície resulta em estruturas na região da austenita. A observação da superfície das amostras detectou uma morfologia semelhante a um telhado (“roof like”) com estruturas com ângulos próximos a 109°, os quais sugerem a aniquilação de discordância na austenita. Outra estrutura detectada nas superfícies das amostras processado por ECA com 1 passe a velocidade de 1,5mm/min. e posterior tratamento térmico a 1200°C durante 60 minutos, foi a martensita induzida por deformação a frio. A avaliação preliminar da recristalização de algumas amostras processadas por ECA com 1 passe a velocidade de 1,5mm/min., e posterior tratamento térmico a 1000°C por 7,5, 15 e 30 minutos identificou pontos localizados de recristalização nos contornos de grão. Com o aumento do tempo de tratamento térmico de 7,5 para 15 minutos, aumentou o número de núcleos de recristalização, ao passo que após tratamento por 30 minutos foi verificado aumento no tamanho dos cristais formados sem expressivo aumento o número de núcleos
2

Evolução microestrutural do aço inoxidável dúplex UNS 532205 durante laminação a frio e posterior recozimento / Microstructural evolution of a UNS S32205 duplex stainless steel duringcold rolling and further annealing

Gauss, Christian 15 October 2015 (has links)
Nesta Dissertação são apresentados os resultados do estudo da evolução microestrutural de um aço inoxidável dúplex UNS S32205 durante o processo de laminação a frio e posterior recozimento em 1080ºC. Amostras do aço na condição como-recebida, laminadas a frio e recozidas isotermicamente foram caracterizadas utilizando as técnicas de microscopia ótica e eletrônica de varredura, dilatometria, espectroscopia de energia dispersiva (EDS), microdureza Vickers, difração de raios X, magnetização de amostra vibrante, macrotextura e difração de elétrons retroespalhados (EBSD). No material na condição como-recebido foi possível observar uma microestrutura com a austenita parcialmente recristalizada (53%) apresentando maclas de recozimento e a ferrita recuperada. Uma fração volumétrica de cerca de 50% de cada fase foi encontrada. Cálculos termodinâmicos e análises químicas via EDS mostram boa concordância quanto à partição de soluto existente entre a ferrita e a austenita. Análises de magnetização mostraram que não houve variação considerável na fração de fase magnética nas amostras laminadas a frio até 79% de redução em espessura, ou seja, não foi possível observar a formação de martensita induzida por deformação nas condições de laminação utilizadas. Medidas do campo coercivo (Hc) e magnetização remanente (MR) mostram, porém, um comportamento quase linear em relação ao grau de deformação. Por meio de medidas de difração de raios X, utilizando uma análise qualitativa do alargamento de picos difratados, observou-se maior encruamento da austenita durante a laminação a frio. O mesmo comportamento foi encontrado em medidas de dureza individual de fases, assim como em análises de desorientação média de kernel (KAM) obtidos via EBSD. Análises de macrotextura e microtextura mostraram que o material na condição como-recebido possui uma textura forte, principalmente a ferrita, apesar de ser proveniente de um processo de laminação a quente. Durante a laminação a frio não foram observadas grandes mudanças nas componentes de textura em ambas as fases, porém, observou-se a intensificação da componente Goss-Latão na austenita, devido à deformação plástica e à formação de bandas de cisalhamento. Na ferrita observou-se uma típica intensificação da fibra ??com o aumento da deformação plástica. As amostras deformadas 43% e 64% recozidas em 1080 ºC apresentaram uma microestrutura totalmente recristalizada após 3 min de tratamento, caracterizada pela formação de uma estrutura tipo \"bambu\". Com 1 min de tratamento, através de análises de espalhamento da orientação de grão (GOS), observou-se a ocorrência de recristalização primária na ferrita (42% de grãos recristalizados) na amostra laminada 43%. Por outro lado, a austenita manteve uma microestrutura levemente recuperada. Com uma deformação de 64%, a fração recristalizada da ferrita não foi alterada significativamente enquanto que a austenita apresentou uma fração recristalizada de 43%. Análises de KAM mostraram uma maior diferença de energia armazenada na austenita do que na ferrita entre as amostras laminadas até 43% e 64%. Após o recozimento não foram observadas mudanças significativas na microtextura de ambas as fases. Porém, na ferrita observou-se um aumento considerável da fração dos contornos especiais (CSL) ?3, ?13b e ?29a (entre 11% e 12% no total) enquanto que na austenita somente um aumento na fração dos contornos tipo ?3 (cerca de 15%) associados aos contornos de macla foi identificado. / In this Dissertation, results of the study of the microstructural evolution of a duplex stainless steel UNS S32205 during the cold rolling process and further isothermal annealing at 1080ºC are reported. Samples of the steel in the as-received, cold-rolled and annealed conditions were characterized using light and scanning electron microscopy, dilatometry, energy dispersive spectroscopy (EDS), Vickers hardness, X-ray diffraction (XRD), vibrating sample magnetization, macrotexture (XRD) and electron backscatter diffraction (EBSD). In the as-received material it was possible to observe a microstructure with partially recrystallized austenite (53%) with the presence of annealing twins and recovered ferrite. A volume fraction of approximately 50% of each phase was found. Thermodynamic calculations and chemical analysis via EDS showed good agreement on solute partitioning between ferrite and austenite. Magnetization analysis showed that there was no considerable changes in the magnetic phase fraction in the samples cold rolled up to 79% in thickness reduction. Hence, it was not possible to observe the formation of deformation induced martensite with the rolling conditions used in this work. Measurements of the coercive field (Hc) and remnant magnetization (MR) show, however, an almost linear behavior in relation to the degree of deformation. Through X-ray diffraction measurements, using a qualitative analysis of the diffracted peaks broadening, a higher work hardening of austenite was observed during cold rolling. The same behavior was found in hardness measurements of individual phases, and in the average kernel misorientation analysis (KAM) obtained by EBSD. Analysis of macrotexture and microtexture showed a strong texture in the as-received material, especially in ferrite, although this material was obtained by a hot-rolling process. During cold-rolling, no significant changes were observed in the texture components of both phases. However, an increase of the Goss-to-Brass component in austenite was noticed, and it may be related to the work hardening and to the formation of shear bands. In ferrite, the strengthening of the ?-fiber was noticed with increasing strain. The samples deformed 43% and 64% and annealed at 1080ºC showed a fully recrystallized microstructure after 3 min of annealing, forming a \"bamboo\" like structure. After 1-min annealing, by using grain orientation spread (GOS) analyzes, it was possible to observe the occurrence of primary recrystallization in ferrite (42% of recrystallized grains) in the 43% cold-rolled sample. On the other hand, austenite kept a slightly recovered microstructure. With a strain of 64%, the recrystallized fraction of ferrite did not change significantly, whereas austenite presented a recrystallized fraction of 45%. KAM analyzes showed a higher stored energy difference in austenite than in ferrite between the 43% and 64% rolled samples. Nevertheless, after annealing, a considerable increase in the fraction of special boundaries (CSL) ?3, ?13b and ?29a (between 11% and 12% in total) was observed in ferrite, while in austenite only an increase in the ?3 boundaries (about 15%), associated with the twin coherent boundaries, was identified.
3

Evolução microestrutural do aço inoxidável dúplex UNS 532205 durante laminação a frio e posterior recozimento / Microstructural evolution of a UNS S32205 duplex stainless steel duringcold rolling and further annealing

Christian Gauss 15 October 2015 (has links)
Nesta Dissertação são apresentados os resultados do estudo da evolução microestrutural de um aço inoxidável dúplex UNS S32205 durante o processo de laminação a frio e posterior recozimento em 1080ºC. Amostras do aço na condição como-recebida, laminadas a frio e recozidas isotermicamente foram caracterizadas utilizando as técnicas de microscopia ótica e eletrônica de varredura, dilatometria, espectroscopia de energia dispersiva (EDS), microdureza Vickers, difração de raios X, magnetização de amostra vibrante, macrotextura e difração de elétrons retroespalhados (EBSD). No material na condição como-recebido foi possível observar uma microestrutura com a austenita parcialmente recristalizada (53%) apresentando maclas de recozimento e a ferrita recuperada. Uma fração volumétrica de cerca de 50% de cada fase foi encontrada. Cálculos termodinâmicos e análises químicas via EDS mostram boa concordância quanto à partição de soluto existente entre a ferrita e a austenita. Análises de magnetização mostraram que não houve variação considerável na fração de fase magnética nas amostras laminadas a frio até 79% de redução em espessura, ou seja, não foi possível observar a formação de martensita induzida por deformação nas condições de laminação utilizadas. Medidas do campo coercivo (Hc) e magnetização remanente (MR) mostram, porém, um comportamento quase linear em relação ao grau de deformação. Por meio de medidas de difração de raios X, utilizando uma análise qualitativa do alargamento de picos difratados, observou-se maior encruamento da austenita durante a laminação a frio. O mesmo comportamento foi encontrado em medidas de dureza individual de fases, assim como em análises de desorientação média de kernel (KAM) obtidos via EBSD. Análises de macrotextura e microtextura mostraram que o material na condição como-recebido possui uma textura forte, principalmente a ferrita, apesar de ser proveniente de um processo de laminação a quente. Durante a laminação a frio não foram observadas grandes mudanças nas componentes de textura em ambas as fases, porém, observou-se a intensificação da componente Goss-Latão na austenita, devido à deformação plástica e à formação de bandas de cisalhamento. Na ferrita observou-se uma típica intensificação da fibra ??com o aumento da deformação plástica. As amostras deformadas 43% e 64% recozidas em 1080 ºC apresentaram uma microestrutura totalmente recristalizada após 3 min de tratamento, caracterizada pela formação de uma estrutura tipo \"bambu\". Com 1 min de tratamento, através de análises de espalhamento da orientação de grão (GOS), observou-se a ocorrência de recristalização primária na ferrita (42% de grãos recristalizados) na amostra laminada 43%. Por outro lado, a austenita manteve uma microestrutura levemente recuperada. Com uma deformação de 64%, a fração recristalizada da ferrita não foi alterada significativamente enquanto que a austenita apresentou uma fração recristalizada de 43%. Análises de KAM mostraram uma maior diferença de energia armazenada na austenita do que na ferrita entre as amostras laminadas até 43% e 64%. Após o recozimento não foram observadas mudanças significativas na microtextura de ambas as fases. Porém, na ferrita observou-se um aumento considerável da fração dos contornos especiais (CSL) ?3, ?13b e ?29a (entre 11% e 12% no total) enquanto que na austenita somente um aumento na fração dos contornos tipo ?3 (cerca de 15%) associados aos contornos de macla foi identificado. / In this Dissertation, results of the study of the microstructural evolution of a duplex stainless steel UNS S32205 during the cold rolling process and further isothermal annealing at 1080ºC are reported. Samples of the steel in the as-received, cold-rolled and annealed conditions were characterized using light and scanning electron microscopy, dilatometry, energy dispersive spectroscopy (EDS), Vickers hardness, X-ray diffraction (XRD), vibrating sample magnetization, macrotexture (XRD) and electron backscatter diffraction (EBSD). In the as-received material it was possible to observe a microstructure with partially recrystallized austenite (53%) with the presence of annealing twins and recovered ferrite. A volume fraction of approximately 50% of each phase was found. Thermodynamic calculations and chemical analysis via EDS showed good agreement on solute partitioning between ferrite and austenite. Magnetization analysis showed that there was no considerable changes in the magnetic phase fraction in the samples cold rolled up to 79% in thickness reduction. Hence, it was not possible to observe the formation of deformation induced martensite with the rolling conditions used in this work. Measurements of the coercive field (Hc) and remnant magnetization (MR) show, however, an almost linear behavior in relation to the degree of deformation. Through X-ray diffraction measurements, using a qualitative analysis of the diffracted peaks broadening, a higher work hardening of austenite was observed during cold rolling. The same behavior was found in hardness measurements of individual phases, and in the average kernel misorientation analysis (KAM) obtained by EBSD. Analysis of macrotexture and microtexture showed a strong texture in the as-received material, especially in ferrite, although this material was obtained by a hot-rolling process. During cold-rolling, no significant changes were observed in the texture components of both phases. However, an increase of the Goss-to-Brass component in austenite was noticed, and it may be related to the work hardening and to the formation of shear bands. In ferrite, the strengthening of the ?-fiber was noticed with increasing strain. The samples deformed 43% and 64% and annealed at 1080ºC showed a fully recrystallized microstructure after 3 min of annealing, forming a \"bamboo\" like structure. After 1-min annealing, by using grain orientation spread (GOS) analyzes, it was possible to observe the occurrence of primary recrystallization in ferrite (42% of recrystallized grains) in the 43% cold-rolled sample. On the other hand, austenite kept a slightly recovered microstructure. With a strain of 64%, the recrystallized fraction of ferrite did not change significantly, whereas austenite presented a recrystallized fraction of 45%. KAM analyzes showed a higher stored energy difference in austenite than in ferrite between the 43% and 64% rolled samples. Nevertheless, after annealing, a considerable increase in the fraction of special boundaries (CSL) ?3, ?13b and ?29a (between 11% and 12% in total) was observed in ferrite, while in austenite only an increase in the ?3 boundaries (about 15%), associated with the twin coherent boundaries, was identified.
4

Avaliação da estabilidade microestrutural e sua relação com as propriedades magnéticas de um aço inoxidável dúplex UNS S32304 / Evaluation of microstructural stability and its relationship with magnetic properties of UNS S32304 duplex stainless steel

Mota, Cristiane Fátima Guimarães Silveira 18 May 2018 (has links)
Os aços inoxidáveis dúplex possuem uma estrutura bifásica (ferrita e austenita) geralmente em frações aproximadamente iguais. Devido aos altos teores de Cr e Ni, esses aços apresentam alta resistência à corrosão e, por isso, são usados principalmente nas indústrias química, petroquímica e nuclear. Dependendo da sua composição química, os aços dúplex podem sofrer transformação martensítica induzida por deformação, com a transformação de austenita (γ) em martensita (α\'). Essa transformação pode ser revertida mediante tratamento térmico. A austenita é paramagnética, enquanto que a ferrita e a martensita são ambas ferromagnéticas. O objetivo desse trabalho foi estudar a relação entre a estabilidade microestrutural e as propriedades magnéticas de um aço dúplex UNS S32304, o qual apresenta transformação martensítica induzida por deformação. Amostras desse aço com redução em espessura de 80% foram recozidas isotermicamente em várias temperaturas até 800ºC por 1 h e resfriadas em água. A partir de laços de histerese obtidos em temperatura ambiente foram obtidos os valores de magnetização de saturação (Ms) e campo coercivo (Hc) para essas amostras. Além das medidas magnéticas essas amostras foram caracterizadas via difração de raios X, testes de dureza, microscopias óptica (MO) e eletrônica de varredura (εEV). Em relação ao εEV foram utilizadas as técnicas de EBSD (do inglês \"eléctron backscatter diffraction\") e ECCI (do inglês \"electron channeling contrast imaging\"). Medidas de magnetização (in situ) em função da temperatura (até 1000ºC) também foram obtidas para o material deformado, a partir das quais foi determinada a temperatura de Curie (Tc) do mesmo. Uma simulação das fases presentes no material em função da temperatura foi obtida utilizando-se o software Thermo-Calc©. Para as amostras recozidas isotermicamente, a inspeção metalográfica mostrou que para 600-700ºC o material apresenta um aspecto fragmentado na microestrutura. Esse aspecto fragmentado é uma evidência da reversão da martensita em austenita. Para a amostra recozida em 700ºC precipitados foram encontrados principalmente na austenita, a qual parece estar recristalizada. Indícios de recristalização da ferrita também foram observados para essa amostra. De acordo com o Thermo-Calc© os precipitados observados são provavelmente do tipo M23C6 (M = Fe, Cr) e Cr2N. A dureza do material apresenta uma queda evidente a partir de 500ºC, relacionada aos fenômenos de recristalização do material e reversão da martensita. Tal como a dureza, Ms e Hc também decaem a partir de ~ 500ºC. A reversão da martensita em austenita e a decomposição da ferrita (α) contribuem para a diminuição de Ms. As medidas magnéticas in situ também forneceram evidências da transformação α → γ + precipitados a partir do comportamento de Tc. Apesar do aspecto fragmentado da microestrutura e da precipitação, não foi observado um comportamento de \"pico\" em Hc em consequência da reversão da martensita em austenita. Isso indica que, no presente estudo, o fator que mais influenciou Hc foi a maior mobilidade das paredes de domínios magnéticos na fase ferrítica, em consequência dos efeitos de recuperação e recristalização. / Duplex stainless steels have a two-phase structure (ferrite and austenite) in approximately equal fractions. Due to their high Cr and Ni contents, these steels present a high corrosion resistance and, in consequence, they are mainly used in chemical, petrochemical and nuclear industries. Depending on their chemical composition, duplex steels may undergo strain induced martensite, with the austenite (γ) transformation in martensite (α\'). This transformation can be reversed by annealing. The austenite is paramagnetic, whereas ferrite and martensite are both ferromagnetic. The goal of this work was to study the relationship between microstructural stability and magnetic properties of a UNS S32304 duplex steel, which presents strain induced martensite. Samples of this steel with 80% thickness reduction were isotermally annealed at several temperatures up to 800ºC for 1 h and water-cooled. From hysteresis loops taken at room temperature, both saturation magnetization (Ms) and coercive field (Hc) were obtained for these samples. In addition to magnetic measurements these samples were characterized using X-ray diffraction, hardness testing, optical (OM) and scanning electron (SEM) microscopies. Regarding SEM were used both EBSD (eléctron backscatter diffraction) and ECCI (electron channeling contrast imaging) techniques. In situ magnetization measurements in function of temperature (up to 1000ºC) were also performed for the deformed material, from which was determined its Curie temperature (Tc). A simulation of the phases present in the material as a function of temperature was performed using the Thermo-Calc© software. For the isothermally annealed samples, metallographic analysis showed that for 600-700ºC the material presents a fragmented microstructure. Such fragmentation is an evidence of the martensite-to-austenite reversion. For the sample annealed at 700ºC precipitates were found mainly in the austenitic phase, which appears to be recrystallized. Evidences of recrystallization were also found for the ferritic phase in the same sample. According to Thermo-Calc© the observed precipitates are probably M23C6 (M = Fe,Cr) and Cr2N. Material\'s hardness present an evident drop for temperatures higher than 500ºC, due to both recrystallization and martensite-to-austenite reversion phenomena. Like hardness, both Ms and Hc also drop in temperatures higher than 500ºC. The martensite-toaustenite reversion and the ferrite decomposition contribute to Ms decreasing. From the Tc behavior, the in situ magnetic measurements also provided evidences of the transformation α → γ + precipitates. In spite of microstructure fragmentation and precipitation, it was not observed a \"pick\" effect in Hc behavior as a consequence of the martensite-to-austenite reversion. This indicates that, in the present study, the factor that most influenced Hc was the higher mobility of magnetic domain walls in the ferritic phase, due to both recovery and recrystallization effects.

Page generated in 0.0506 seconds