• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 47
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cellular signalling events triggered by picornavirus infection

Diviney, Sinéad Majella January 2003 (has links)
No description available.
2

A Vacuum Tube for an Electrostatic Generator

Pool, John Reginald 08 1900 (has links)
The purpose of this study has been to construct two accelerating tubes with small beam apertures for the Van de Graaff, modifying the prototype tube designed and tested by Wiley (20), to design and construct a vacuum system for evacuating the tubes, and to determine the characteristics of the tube under operating conditions while installed in the generator.
3

Studies on multi-harmonic collinear accelerating structures for high gradient applications

Carver, Lee January 2016 (has links)
High gradient acceleration is a core challenge of accelerator physics. Achieving high gradients is made challenging by issues relating to rf breakdown and pulsed surface heating, which are caused by intense surface fields in the accelerating cavities. The excitation of multiple harmonically related modes within a cavity could reduce the onset of these effects. The temperature rise from pulsed surface heating can be reduced by lowering the average magnetic surface field squared and rf breakdown could be avoided by creating an asymmetry between the anode and cathode surface electric fields. This thesis will present several different cavity designs that show a reduction in the temperature rise on the surface of over 10% for second and third harmonic cavity structures or an asymmetry in the surface electric anode and cathode fields of a factor of 2. The harmonic mode could have undesirable consequences for beam stability. A study of the longitudinal beam dynamics is included that will derive the equations governing the longitudinal motion and show that the harmonic mode will have a minor and predictable effect on the rf bucket. The Compact LInear Collider (CLIC) is a major contender for the next generation of lepton linear colliders and is made challenging by high power requirements and distribution throughout the linac. A high current drive beam is decelerated parallel to the main linac in order to create the required rf power, which can overcome some of these issues. This thesis will describe a novel design for a CLIC-like accelerating structure, using collinear acceleration through fundamental mode detuned cavities. The design will accommodate interleaved drive and test bunches, such that the drive bunches are decelerated and the test bunches are accelerated within the confines of the same cavity which can result in high transformer ratios. The analytical theory based on the circuit model will be verified by time domain simulations. A multi-harmonic detuned accelerating structure is introduced that exhibits the properties of pulsed surface heating reduction and can be used for collinear acceleration. Time domain simulations will verify the transformer ratio to within 3% of theoretical predictions and the average magnetic field squared reduction will be within 20% of the value calculated from eigenmode simulations.
4

A CPU-GPU Hybrid Approach for Accelerating Cross-correlation Based Strain Elastography

Deka, Sthiti 2010 May 1900 (has links)
Elastography is a non-invasive imaging modality that uses ultrasound to estimate the elasticity of soft tissues. The resulting images are called 'elastograms'. Elastography techniques are promising as cost-effective tools in the early detection of pathological changes in soft tissues. The quality of elastographic images depends on the accuracy of the local displacement estimates. Cross-correlation based displacement estimators are precise and sensitive. However cross-correlation based techniques are computationally intense and may limit the use of elastography as a real-time diagnostic tool. This study investigates the use of parallel general purpose graphics processing unit (GPGPU) engines for speeding up generation of elastograms at real-time frame rates while preserving elastographic image quality. To achieve this goal, a cross-correlation based time-delay estimation algorithm was developed in C programming language and was profiled to locate performance blocks. The hotspots were addressed by employing software pipelining, read-ahead and eliminating redundant computations. The algorithm was then analyzed for parallelization on GPGPU and the stages that would map well to the GPGPU hardware were identified. By employing optimization principles for efficient memory access and efficient execution, a net improvement of 67x with respect to the original optimized C version of the estimator was achieved. For typical diagnostic depths of 3-4cm and elastographic processing parameters, this implementation can yield elastographic frame rates in the order of 50fps. It was also observed that all of the stages in elastography cannot be offloaded to the GPGPU for computation because some stages have sub-optimal memory access patterns. Additionally, data transfer from graphics card memory to system memory can be efficiently overlapped with concurrent CPU execution. Therefore a hybrid model of computation where computational load is optimally distributed between CPU and GPGPU was identified as an optimal approach to adequately tackle the speed-quality problem in real-time imaging. The results of this research suggest that use of GPGPU as a co-processor to CPU may allow generation of elastograms at real time frame rates without significant compromise in image quality, a scenario that could be very favorable in real-time clinical elastography.
5

The Quantification of Force Distribution of a Vibrational Device for Accelerating Tooth Movement

Akbari, Amin 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / One of the most common concern among patients who need orthodontic treatment is treatment duration. The ability to accelerate orthodontic tooth movements would be bene cial to reduce the undesired side-effects of prolonged treatment. Methods have been used in conjugate with common orthodontic appliances to shorten the treatment. One of them is to use vibrational force (VF), which is non-invasive. The VF stimulates bone modeling and remodeling, which is essential to tooth movement. However, commercial devices used in the clinic failed to deliver consistent outcomes. The effects of the VF highly depend on its intensity the tooth receives. There must be a range of stimulation that optimizes the ffeects. The stimulation outside the range either have no effects or creates damages, which adversely affects the orthodontic treatment. Since these devices have generic mouthpiece and teeth are in di erent heights, hence some teeth cannot get force stimulation and others may be overloaded. The current designs also do not have ability to adjust the level of VF intensity that individual tooth needs, as in some cases orthodontists are required to move a tooth faster than others or even slower, which needs the device to be personalized. There- fore, the primary cause of inconsistent clinical outcomes is the inadequate design of the mouthpiece of the current device. The goal of this study is to design a better vibratory device that not only guarantees VF delivery but also enables orthodontists to control the level of VF on the individual tooth, which meets the patient's treat- ment needs. This is a preliminary study to understand the effects of different design parameters affecting the VF distribution on teeth. A nite element model, which consists of human upper and lower jaws in their occlusal positions and a mouthpiece, was created. The VF was from a vibratory source with a peak load of 0.3N and speci ed frequencies (30 and 120 Hz). The element size was determined through a convergence test and the model was validated experimentally. Results showed that the VF distribution among the teeth relies on the material property of the mouthpiece. The distribution is uneven, meaning some teeth bearing much more load than others. This means, with the current device design, teeth would be a ected with di erent level of force stimulation, which results in di erent clinical outcomes consequently. Dynamic load (VF) changes the force distribution on the teeth comparing to the dis- tribution from a static load. Frequency does not affect the peak load. Finally, the study demonstrated that the level of VF stimulation can be adjusted by introducing clearance or interference between the teeth and mouthpiece. It is feasible to control the level of the VF intensity for individual tooth based on treatment requirement.
6

Energia escura e aceleração do Universo: Aspectos conceituais e testes observacionais / Dark Energy and The Accelerating Universe: Conceptual Aspects and Observational Tests

Jesus, José Fernando de 23 June 2010 (has links)
Na última década, o extraordinário progresso nas observações astronômicas (distâncias com supernovas (SNe Ia), espectros de potência da matéria e da radiação cósmica de fundo (RCF), determinação do brilho de aglomerados de galáxias, etc.) aliado com importantes desenvolvimentos teóricos, transformaram a Cosmologia numa das fronteiras mais excitantes da ciência contemporânea. Nesta tese, diferentes testes observacionais são utilizados para vincular alguns cenários cosmológicos acelerados (com e sem energia escura), todos eles definidos no contexto teórico da Relatividade Geral. Inicialmente, para uma grande classe de modelos com decaimento do vácuo, investigamos os vínculos provenientes da existência de objetos velhos em altos redshifts. No modelo de Chen e Wu generalizado, encontramos que o limite para o parâmetro livre descrevendo a taxa do decaimento do vácuo é 0,21 < n < 0,81. Este resultado descarta o modelo de Chen e Wu original (n=2) e também o modelo de concordância cósmica, LCDM (n=0). Além disso, quando incluímos o fluido bariônico em nossa análise do modelo de Wang e Meng, obtemos para seu parâmetro livre um limite inferior, epsilon > 0,231, um valor em desacordo com estimativas independentes baseadas em SNe Ia, RCF e o brilho de Raios-X de aglomerados. Propusemos também um teste estatístico com base nas idades estimadas para uma amostra de 13 galáxias velhas em altos redshifts. Através de uma análise conjunta envolvendo as idades das galáxias e as oscilações acústicas dos bárions (BAO), vinculamos o valor da constante de Hubble no contexto do modelo LCDM plano. Considerando um tempo de incubação adotado por diferentes autores, obtemos h=0,71±0,04 (1 sigma), um resultado de acordo com observações independentes baseadas em Cefeidas (obtidas com o Hubble Space Telescope) e outras estimativas mais recentes. Outro resultado interessante foi obtido através de uma análise termodinâmica para uma classe de modelos com interação no setor escuro (matéria escura-energia escura). Contrariamente ao que se pensava até então, encontramos que a termodinâmica permite que a matéria escura decaia em energia escura, contanto que ao menos uma das componentes possua um potencial químico não-nulo. Como complemento, mostramos que, para um termo de interação específico, dados de SNe Ia, BAO e RCF favorecem o decaimento da matéria escura com ~ 93% de confiança estatística. Investigamos também o comportamento do redshift de transição em diferentes cosmologias, com e sem energia escura, e mostramos que essa quantidade pode ter uma variação extrema dependendo do modelo cosmológico subjacente. Finalmente, discutimos também um novo modelo cosmológico cuja aceleração em baixos redshifts é determinada pela criação de partículas da matéria escura fria. O modelo representa uma redução do setor escuro, isto é, não tem energia escura, contém apenas um parâmetro livre e satisfaz os vínculos de Supernovas do tipo Ia tão bem quanto o modelo LCDM padrão. / In the last decade, the extraordinary progress of the astronomical observations (distances with supernovas, matter and cosmic background radiation (CBR) power spectrum, X-ray surface brightness of galaxy clusters, etc) associated with important theoretical developments turned Cosmology one of the most exciting frontiers of contemporary science. In this thesis, different observational tests are used to constrain several cosmological accelerating scenarios (with and without dark energy), all of them defined in the theoretical framework of General Relativity. Initially, for a large class of decaying vacuum models, we investigate the constraints provided by the existence of old high redshift objects. In the model proposed by Chen and Wu, we find that the limit for the free parameter describing the decay rate of the vacuum fluid is 0.21 < n < 0.81. This result ruled out the original Chen and Wu model (n = 2) and also the cosmic concordance model, LCDM (n = 0). Further, when we include the baryonic fluid in our analysis of the Wang and Meng model, we find for its free parameter a lower bound, epsilon > 0.231, a value in disagreement with independent estimates based on SNe Ia, CMB (shift parameter) and the X-ray surface brightness of galaxy clusters. We also propose a new cosmological statistical test based on the estimated ages of 13 old high redshift galaxies. By performing a joint analysis involving the ages of the galaxies and the baryon acoustic oscillations (BAO) probe, we constrain the value of the Hubble parameter in the context of the flat LCDM model. For an incubation time adopted by different authors, we find h = 0.71 ± 0.04 (1 sigma), a result in agreement with independent observations based on Cepheids (obtained with the Hubble Space Telescope) and other recent estimations. Another interesting result has been derived from a thermodynamic analysis for a class of models endowed with interaction in the dark sector (dark matter and dark energy). In contrast with some results appearing in the literature, we show that the decaying of cold dark matter into dark energy is not forbidden by thermodynamics, provided that the chemical potential of one component is different from zero. As a complement, we also show (for a specific term describing the interaction) that this kind of decaying is favored by SNe Ia, BAO and CMB data with ~ 93% of statistical confidence. We also investigate in detail the behavior of the transition redshift for different cosmologies (with and without dark energy). It is found that such a quantity may have an extreme variation that depends on the underlying cosmological model. Finally, we also discuss a new cosmological model whose acceleration at low redshifts is determined by the creation of cold dark matter particles. The model represents a reduction of the dark sector, that is, it has no dark energy, contains only one free parameter and satisfies the Supernovae type Ia constraints with the same precision of the standard LCDM model.
7

A Comprehensive Integration and Analysis of Dynamic Load Balancing Architectures within Molecular Dynamics

Rogers, Christopher Reed 01 May 2009 (has links)
The world of nano-science is an ever-changing field. Molecular Dynamics (MD) is a computational suite of tools that is useful for analyzing and predicting behaviors of substances on the molecular level. The nature of MD is such that only a few types of computations are repeated thousands or sometimes millions of times over. Even a small increase speedup or efficiency of an MD simulator can compound itself over the life of the simulation and have a positive and observable effect. This thesis is the end result of an attempted speedup of the MD problem. Two types of MD architectures are developed: a dynamic architecture that is able to change along with the computational demands of the system, and a static architecture that is configured in terms of processing elements to be best suited to a variety of computational demands. The efficiency, throughput, area, and speed of the dynamic and static architectures are presented, highlighting the improvement that the dynamic architecture presents in its ability to provide load balancing.
8

Experimental study of DC vacuum breakdown and application to high-gradient accelerating structures for CLIC

Shipman, Nicholas Christopher January 2015 (has links)
The compact linear collider (CLIC) is a leading candidate for the next generation high energy linear collider. As any breakdown would result in a partial or full loss of luminosity for the pulse in which it occurs, obtaining a low breakdown rate in CLIC accelerating structures is a critical requirement for the successful operation of the proposed collider. This thesis presents investigations into the breakdown phenomenon primarily in the low breakdown rate regime of interest to CLIC, performed using the CERN DC spark systems between 2011 and 2014.The design, construction and commissioning of several new pieces of hardware, as well as the development of improved techniques to measuring the inter-electrode gap distance are detailed. These hardware improvements were fundamental in enabling the exciting new experiments mentioned below, which in turn have provided significant additional insight into the phenomenon of breakdown. Experiments were performed o measure fundamental parameters of individual breakdowns, including, the turn-on time and the delay before breakdown in order to gain an improved understanding of how breakdowns are triggered and the underlying process behind them. The turn-on time measurements are the highest bandwidth measurements made to date with the CERN DC systems and are closer than ever before to the value which is expected from the present understanding of breakdown simulations. Another key measurement was that of the breakdown rate scaling with electric field. Previous investigations of this relationship in the DC systems were unable to investigate breakdown rates below 10^3 breakdowns per pulse. These new results are able to investigate this relationship down to a breakdown rate of 10^-8 and are hence a considerable improvement. Thanks to these improved results a remarkable similarity to the scaling of the breakdown rate with electric field in RF cavities was discovered. The conditioning, or change in breakdown rate over time was also studied for the first time in the CERN DC spark systems as well as the newly built fixed gap system. The qualitative conditioning behaviour of the Fixed Gap System again showed interesting similarities to that observed in RF structures. Preliminary studies into the effect of pulse length and magnetic field on the breakdown rate were conducted as well. This is the first time the effect of a DC magnetic field was studied in a DC spark system and in contrast to experiments in RF cavities no statistically significant effect was observed. The dependence of the breakdown rate on pulse length, again the first measurement of its kind in a DC system also revealed a similar scaling law to that observed in RF accelerating structures. Both of these preliminary measurements would need to be repeated to confirm the results.
9

Energia escura e aceleração do Universo: Aspectos conceituais e testes observacionais / Dark Energy and The Accelerating Universe: Conceptual Aspects and Observational Tests

José Fernando de Jesus 23 June 2010 (has links)
Na última década, o extraordinário progresso nas observações astronômicas (distâncias com supernovas (SNe Ia), espectros de potência da matéria e da radiação cósmica de fundo (RCF), determinação do brilho de aglomerados de galáxias, etc.) aliado com importantes desenvolvimentos teóricos, transformaram a Cosmologia numa das fronteiras mais excitantes da ciência contemporânea. Nesta tese, diferentes testes observacionais são utilizados para vincular alguns cenários cosmológicos acelerados (com e sem energia escura), todos eles definidos no contexto teórico da Relatividade Geral. Inicialmente, para uma grande classe de modelos com decaimento do vácuo, investigamos os vínculos provenientes da existência de objetos velhos em altos redshifts. No modelo de Chen e Wu generalizado, encontramos que o limite para o parâmetro livre descrevendo a taxa do decaimento do vácuo é 0,21 < n < 0,81. Este resultado descarta o modelo de Chen e Wu original (n=2) e também o modelo de concordância cósmica, LCDM (n=0). Além disso, quando incluímos o fluido bariônico em nossa análise do modelo de Wang e Meng, obtemos para seu parâmetro livre um limite inferior, epsilon > 0,231, um valor em desacordo com estimativas independentes baseadas em SNe Ia, RCF e o brilho de Raios-X de aglomerados. Propusemos também um teste estatístico com base nas idades estimadas para uma amostra de 13 galáxias velhas em altos redshifts. Através de uma análise conjunta envolvendo as idades das galáxias e as oscilações acústicas dos bárions (BAO), vinculamos o valor da constante de Hubble no contexto do modelo LCDM plano. Considerando um tempo de incubação adotado por diferentes autores, obtemos h=0,71±0,04 (1 sigma), um resultado de acordo com observações independentes baseadas em Cefeidas (obtidas com o Hubble Space Telescope) e outras estimativas mais recentes. Outro resultado interessante foi obtido através de uma análise termodinâmica para uma classe de modelos com interação no setor escuro (matéria escura-energia escura). Contrariamente ao que se pensava até então, encontramos que a termodinâmica permite que a matéria escura decaia em energia escura, contanto que ao menos uma das componentes possua um potencial químico não-nulo. Como complemento, mostramos que, para um termo de interação específico, dados de SNe Ia, BAO e RCF favorecem o decaimento da matéria escura com ~ 93% de confiança estatística. Investigamos também o comportamento do redshift de transição em diferentes cosmologias, com e sem energia escura, e mostramos que essa quantidade pode ter uma variação extrema dependendo do modelo cosmológico subjacente. Finalmente, discutimos também um novo modelo cosmológico cuja aceleração em baixos redshifts é determinada pela criação de partículas da matéria escura fria. O modelo representa uma redução do setor escuro, isto é, não tem energia escura, contém apenas um parâmetro livre e satisfaz os vínculos de Supernovas do tipo Ia tão bem quanto o modelo LCDM padrão. / In the last decade, the extraordinary progress of the astronomical observations (distances with supernovas, matter and cosmic background radiation (CBR) power spectrum, X-ray surface brightness of galaxy clusters, etc) associated with important theoretical developments turned Cosmology one of the most exciting frontiers of contemporary science. In this thesis, different observational tests are used to constrain several cosmological accelerating scenarios (with and without dark energy), all of them defined in the theoretical framework of General Relativity. Initially, for a large class of decaying vacuum models, we investigate the constraints provided by the existence of old high redshift objects. In the model proposed by Chen and Wu, we find that the limit for the free parameter describing the decay rate of the vacuum fluid is 0.21 < n < 0.81. This result ruled out the original Chen and Wu model (n = 2) and also the cosmic concordance model, LCDM (n = 0). Further, when we include the baryonic fluid in our analysis of the Wang and Meng model, we find for its free parameter a lower bound, epsilon > 0.231, a value in disagreement with independent estimates based on SNe Ia, CMB (shift parameter) and the X-ray surface brightness of galaxy clusters. We also propose a new cosmological statistical test based on the estimated ages of 13 old high redshift galaxies. By performing a joint analysis involving the ages of the galaxies and the baryon acoustic oscillations (BAO) probe, we constrain the value of the Hubble parameter in the context of the flat LCDM model. For an incubation time adopted by different authors, we find h = 0.71 ± 0.04 (1 sigma), a result in agreement with independent observations based on Cepheids (obtained with the Hubble Space Telescope) and other recent estimations. Another interesting result has been derived from a thermodynamic analysis for a class of models endowed with interaction in the dark sector (dark matter and dark energy). In contrast with some results appearing in the literature, we show that the decaying of cold dark matter into dark energy is not forbidden by thermodynamics, provided that the chemical potential of one component is different from zero. As a complement, we also show (for a specific term describing the interaction) that this kind of decaying is favored by SNe Ia, BAO and CMB data with ~ 93% of statistical confidence. We also investigate in detail the behavior of the transition redshift for different cosmologies (with and without dark energy). It is found that such a quantity may have an extreme variation that depends on the underlying cosmological model. Finally, we also discuss a new cosmological model whose acceleration at low redshifts is determined by the creation of cold dark matter particles. The model represents a reduction of the dark sector, that is, it has no dark energy, contains only one free parameter and satisfies the Supernovae type Ia constraints with the same precision of the standard LCDM model.
10

Nb3Sn Targets Synthesis via Liquid Tin Diffusion for Thin Films Depositions

Zanierato, Matteo, Azzolini, Oscar, Cavazzani, Jonathan, Chyhyrynets, Eduard, Garcia Diaz, Vanessa, Glisenti, Antonella, Keppel, Giorgio, Ragazzo, Nico, Stivanello, Fabrizio, Pira, Cristian 21 September 2022 (has links)
The deposition of superconducting Nb3 Sn on copper accelerating cavities is interesting for the higher thermal conductivity of copper compared to common Nb substrates. The better heat exchange would allow the use of cryocoolers reducing cryogenic costs and the risk of thermal quench [1]. The magnetron sputtering technology allows the deposition of Nb 3 Sn on substrates different than Nb, however the coating of substrates with complex geometry (such as elliptical cavities) may require target with non-planar shape, which are difficult to realize with classic powder sintering techniques. In this work, the possibility of using the Liquid Tin Diffusion (LTD) technique to produce sputtering targets is explored. The LTD technique is a wire fabrication technology, already developed in the past at LNL for superconducting radio frequency (SRF) applications [2], that allows the deposition of very thick and uniform coating on Nb substrates even with complex geometries [3]. Improvements in LTD process, proof of concept of a single use LTD target production, and characterization of the Nb 3 Sn film coated by DC magnetron sputtering with these innovative targets are reported in this work.

Page generated in 0.0953 seconds