• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetic Approach with Elitist and Extinction Apply to the Design of Active Vibration Controller

Chen, Chih-Kang 04 July 2000 (has links)
We use the elitist and extinction policies to improve the simple genetic algorithm in this study. We expect that the search technique can avoid falling into the local maximum due to the premature convergence, and the chance of finding the near-optimal parameter in the larger searching space could be obviously increased. The accelerometer is then taken as the sensor for output measurement, and the designed controller is implemented to actively suppress the vibration of the plain that is due to the excitation effect of the high-speed and precision positioning of the linear motor. From the computer simulations and the experimented results, it is obvious that the near-optimal controller designed by using genetic approach with elitist and extinction can improve the effect of vibration suppression; the settling time is also decrease. For the vibration suppressions of high-speed precision positioning problems, the results are satisfactory in the cases of short, middle and long distance.
2

Adaptive Genetic Algorithms with Elitist Strategy to the Design of Active Vibration controller for Linear Motors Position Plain

Chen, Yih-Ren 05 July 2001 (has links)
We use the adaptive probabilities of crossover and mutation, elitist strategy, and extinction and immigration strategy to improve the simple genetic algorithm in this study. We expect that the search technique can avoid falling into the local maximum due to the premature convergence, and the chance of finding the near-optimal parameter in the larger searching space could be obviously increased. The accelerometer is then taken as the sensor for output measurement, and the designed actuator and digital PID controller is implemented to actively suppress the vibration of the plain that is due to the excitation effect of the high-speed and precision positioning of the linear motor. From the computer simulations and the experimented results, it is obvious that the near-optimal digital PID controller designed by modified genetic approach can improve the effect of vibration suppression; the settling time is also decrease. For the vibration suppressions of high-speed precision positioning problems, the vibrating plain system can fastly be stabilized.
3

Human-Robot Interactive Control

Jou, Yung-Tsan January 2003 (has links)
No description available.
4

Control of a benchmark structure using GA-optimized fuzzy logic control

Shook, David Adam 15 May 2009 (has links)
Mitigation of displacement and acceleration responses of a three story benchmark structure excited by seismic motions is pursued in this study. Multiple 20-kN magnetorheological (MR) dampers are installed in the three-story benchmark structure and managed by a global fuzzy logic controller to provide smart damping forces to the benchmark structure. Two configurations of MR damper locations are considered to display multiple-input, single-output and multiple-input, multiple-output control capabilities. Characterization tests of each MR damper are performed in a laboratory to enable the formulation of fuzzy inference models. Prediction of MR damper forces by the fuzzy models shows sufficient agreement with experimental results. A controlled-elitist multi-objective genetic algorithm is utilized to optimize a set of fuzzy logic controllers with concurrent consideration to four structural response metrics. The genetic algorithm is able to identify optimal passive cases for MR damper operation, and then further improve their performance by intelligently modulating the command voltage for concurrent reductions of displacement and acceleration responses. An optimal controller is identified and validated through numerical simulation and fullscale experimentation. Numerical and experimental results show that performance of the controller algorithm is superior to optimal passive cases in 43% of investigated studies. Furthermore, the state-space model of the benchmark structure that is used in numerical simulations has been improved by a modified version of the same genetic algorithm used in development of fuzzy logic controllers. Experimental validation shows that the state-space model optimized by the genetic algorithm provides accurate prediction of response of the benchmark structure to base excitation.
5

Angular Acceleration Assisted Stabilization Of A 2-dof Gimbal Platform

Ozturk, Taha 01 October 2010 (has links) (PDF)
In this thesis work construction of the angular acceleration signal of a 2-DOF gimbal platform and use of this signal for improving the stabilization performance is aimed. This topic can be divided into two subtopics, first being the construction of angular acceleration and the second being the use of this information in a way to improve system performance. Both problems should be tackled in order to get satisfactory results. The most important output of this work is defined as the demonstration of the improvements obtained both theoretically and on experimental setup. Although the system to be studied is a two axis gimbal platform, the results obtained can be applied to other servo control problems. It is possible to define different performance criteria for a servo control problem and different techniques will be addressed with different control objectives. For this thesis work, the performance criterion is defined as the stabilization performance of the platform. As a result, disturbance rejection characteristics of the controller emerges as the main topic and methods for rejecting these disturbances such as the friction torques and externally applied moments are focused on throughout the studies. As expected, remarkable improvement is achieved as a result of the use of acceleration feedback.

Page generated in 0.1318 seconds