• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chimie de l’iode dans le circuit primaire d’un réacteur nucléaire en situation d’accident grave : étude de mélanges CsI/MoO3 sous vapeur d’eau / Iodine chemistry in the reactor coolant system of a nuclear power plant in case of a severe accident-study of CsI/MoO3 mixtures under steam

Lacoue-Nègre, Marion 06 December 2010 (has links)
En cas d’accident grave sur un réacteur à eau sous pression, l’évaluation de la quantité d’iode susceptible d’être rejetée dans l’environnement revêt une grande importance du fait de la radiotoxicité et du caractère volatil de cet élément. A ce jour, les connaissances acquises et les modèles utilisés ne permettent pas de rendre compte complètement du comportement de l’iode observé lors d’essais à grande échelle (programme PHEBUS-FP). Ces essais ont mis en évidence le rôle de la chimie hydrothermale de produits de fission (PF) tels que Cs et Mo sur la formation d’iode gazeux dans le circuit primaire. Des expériences de laboratoire dans un montage spécialement conçu reproduisent la chimie de mélanges CsI/MoO3 sous vapeur d’eau entre 1600 et 150°C. Les analyses globales (ICP-MS, DRX) et locales (MEBE-EDX, microspectrométrie Raman) ont permis d’identifier CsI, MoO3,xH2O et Cs2MonO3n+1 (n=1,2,3,5,7) dans les particules d’aérosols submicroniques collectés à 150°C. La formation des molybdates de césium Cs2MonO3n+1 conduit à la présence d’iode en phase gazeuse à 150°C. La modélisation de la chimie et du transport des espèces gazeuses et particulaires du système {I, Cs, Mo, O, H}. dans la ligne expérimentale a été réalisée à l’aide du code de calcul SOPHAEROS. La comparaison des résultats expérimentaux et des résultats des simulations met en avant des écarts, en particulier sur la prévision de la quantité d’iode gazeux présente à 150°C. / Iodine and cesium radio nuclides constitute important fission products (FP) of 235U. If the volatile forms (gas, aerosol) of FP would be released into the environment during a hypothetical severe accident of pressurized water reactor (PWR), a potential health hazard would be the ensue. Understanding their behaviors is an important prerequisite for planning appropriate mitigation measures. Severe reactor accident simulations are conducted in several tests of the international PHEBUS-FP program. The suspected connection existing between FP such as Cs, Mo and I, hydrothermal chemistry and its role on the iodine speciation in the primary circuit of reactor coolant system are highlighted. An experimental setup was developed to study the chemical behavior of CsI/MoO3 mixtures at 1600°C under steam and then during the steam cooling to 150 °C. These hydrothermal conditions are representative of the primary circuit of PWR. The analyses using ICP-MS, powder XRD, MEBE-EDX and Raman microspectrometry identify submicrometric aerosol particles as CsI, MoO3.xH2O and Cs2MonO3n+1 (n=1, 2, 3, 5, 7) according to the starting CsI/MoO3 ratio. The formation of Cs2MonO3n+1 induces the generation of gaseous iodine. This later result is in agreement with PHEBUS-FP experiments. The simulations of vapor phase chemistry and aerosol phenomena of the {I, Cs, Mo, O, H} system in the experimental setup were carried out using the SOPHAEROS code based on the thermodynamic chemical equilibriums. Some discrepancies were observed between experimental and simulated results, particularly for Mo rich particles and the volatile iodine species release.
2

ETUDE DE LA CINETIQUE ET DE LA THERMODYNAMIQUE DES SYSTEMES REACTIONNELS (X-I-O-H) PAR SPECTROMETRIE DE MASSE HAUTE TEMPERATURE

Roki, Fatima-Zahra 29 January 2009 (has links) (PDF)
La spectrométrie de masse haute température a été utilisée pour analyser les vapeurs simulant la réaction entre l'iode et les produits de fissions issus d'un accident grave de réacteur nucléaire à eau pressurisée. Deux voies principales ont été explorées, -(i) l'analyse thermodynamique des processus de vaporisation de CsOH, CsI et des mélanges CsI-CsOH. - (ii) la conception d'un réacteur spécifique pour l'analyse de la cinétique de recombinaison d'atomes pour former des molécules stables. La présente étude a confirmé l'existence de la molécule mixte Cs2IOH(g). Les pressions de vapeurs CsOH(g), Cs2O2H2(g) et Cs2IOH(g) ont été déterminées. Les paramètres moléculaires de la molécule mixte ont été estimés sur la base des dimères purs Cs2O2H2(g) and Cs2I2(g) et l'enthalpie de formation proposée. L'acquisition de données cinétiques nécessite un réacteur dédié dont la conception est présentée dans ce travail ainsi que les tests de qualifications associés.
3

Contribution à l'étude du relâchement des produits de fission hors de combustibles nucléaires en situation d'accident grave : effet de la pO2 sur la spéciation du Cs, Mo et Ba / Contribution to the study of fission products release from nuclear fuels in severe accident conditions : effect of the pO2 on Cs, Mo and Ba speciation

Le Gall, Claire 16 November 2018 (has links)
Comprendre les mécanismes de spéciation des Produits de Fission (PF) dans le combustible nucléaire est un enjeu majeur pour pouvoir estimer précisément le terme source d’un accident grave. Parmi les nombreux PF créés, certains sont très réactifs et peuvent avoir un impact radiologique important en cas de relâchement dans l’atmosphère. C’est notamment le cas du césium (Cs), du molybdène (Mo) et du baryum (Ba). C’est dans ce contexte que s’inscrit le travail de thèse qui propose d’apporter des données expérimentales sur l’effet du potentiel oxygène sur la spéciation du Cs, du Mo et du Ba dans des combustibles nucléaires, à différents stades d’un accident grave.Une approche thermodynamique a été utilisée en support à l’interprétation des données expérimentales obtenues dans le cadre de ce travail. Deux types d’échantillons ont été étudiés: des combustibles MOX irradiés et des matériaux simulant un combustible UO2 à fort taux de combustion, obtenus par frittage à haute température (SIMFuel). Les échantillons ont été traités thermiquement dans des conditions représentatives d’un accident grave survenant dans un Réacteur à Eau Pressurisée (REP). Les conditions expérimentales ont couvert une gamme de température allant de 400°C à 2530°C et des potentiels oxygène situés entre -470 kJ.mol(O2)-1 et -100 kJ.mol(O2)-1. Les échantillons ont été caractérisés finement avant et après chaque traitement à l’aide de techniques complémentaires comme la microscopie optique et électronique, la microsonde et le SIMS dans le cas de l’irradié. Des mesures de XANES sur synchrotron ont été réalisées sur SIMFuel et ont conduit à des résultats importants en termes de spéciation des PF. Enfin, la technique de Spark Plasma Sintering (SPS) a été explorée avec succès pour la fabrication de SIMFuel contenant du Cs, du Mo et du Ba sous des formes chimiques représentatives d’un combustible REP en fonctionnement nominal.Ce travail a permis de mettre en évidence l’effet de la température en conditions oxydantes sur le comportement du combustible et des PF. Une oxydation du Mo, initialement présent sous forme métallique dans les inclusions blanches du combustible, en MoO2 a été observée dès 1000°C en conditions oxydantes. Une interaction entre le MoO2 formé et le Ba contenu dans la phase oxyde a eu lieu dans les mêmes conditions, menant à la formation de BaMoO4. Le potentiel oxygène joue aussi un rôle important dans le phénomène d’interaction pastille-gaine, en favorisant la diffusion des espèces en conditions oxydantes, diminuant ainsi la température de fusion du combustible. / In the nuclear community, it is a top priority to gain in-depth understanding of fission product (FP) speciation mechanisms occurring in nuclear fuel in order to precisely estimate the source term of a severe accident. Among the FP produced, some are highly reactive and may have a strong radiological impact if released into the environment. This is particularly the case of cesium (Cs), molybdenum (Mo) and barium (Ba). In this context, the objective of this study is to provide experimental data on the effect of the oxygen potential on Cs, Mo and Ba speciation in nuclear fuels at different stages of a severe accident.A thermodynamic approach was coupled with the experimental work to support the interpretation of experimental data. Two types of samples were studied in detail: irradiated MOX fuels and simulated high burn-up UO2 fuels produced through sintering at high temperature (SIMFuel). The samples were submitted to thermal treatments in conditions representative of a pressurised water reactor (PWR) severe accident. This approach made it possible to cover a temperature range from 400°C up to 2530°C and oxygen potentials from -470 kJ.mol(O2)-1 to -100 kJ.mol(O2)-1. The samples were characterized before and after each test using complementary techniques like OM, SEM, EPMA and SIMS in the case of irradiated fuels. XANES measurements using synchrotron radiation facilities were performed on SIMFuels and provided valuable results on FP speciation. Moreover, spark plasma sintering (SPS) was successfully investigated for the production of SIMFuel samples containing Cs, Mo and Ba in a chemical state representative of PWR fuel in normal operating conditions.This work highlighted the effect of oxidizing severe accident conditions on the fuel and FP behavior. Oxidation of Mo initially contained in the fuel’s metallic inclusions into MoO2 was observed to take place around 1000°C in oxidizing conditions. An interaction between MoO2 and the oxide phase containing Ba took place in the same conditions, leading to the formation of BaMoO4. The oxygen potential also plays an important role in fuel-cladding interactions, enhancing the diffusion of species in oxidizing conditions and lowering the temperature at which fuel melting occurs.
4

Piégeage d’espèces iodées volatiles sur des adsorbants poreux de type zéolithique dans le contexte d’un accident nucléaire grave / Trapping of volatile iodine species by zeolitic materials in the context of severe nuclear accident

Chebbi, Mouheb 18 October 2016 (has links)
L’accident de Fukushima a montré que sous certaines conditions, un accident de fusion du cœur (jugé hautement improbable) peut survenir et engendrer des conséquences dramatiques en termes de rejets de produits radioactifs dans l’environnement. La mise en place d’adsorbants poreux type zéolithe dans les filtres d’éventage constitue une solution prometteuse afin de limiter la dissémination de produits radioactifs notamment les espèces iodées volatiles, vers l’environnement. Dans cette étude, nous avons cherché à évaluer dans quelle mesure les propriétés structurales et chimiques d’adsorbants poreux essentiellement des zéolithes à l’argent, pouvaient affecter leurs performances vis-à-vis de la rétention d’I2 et de CH3I. Dans ce but, nous avons mis en relation les données issues de la caractérisation des différentes formulations zéolithiques (DRX, ATR/IR, DRIFTS du CO adsorbé, MEB, MET, et DR-UV-Vis) avec les données recueillies lors des tests dynamiques d’adsorption en phase gazeuse (capacités d’adsorption, facteurs de décontamination, stabilité thermique du piégeage). Ensuite, le comportement des zéolithes dans des conditions plus représentatives d’un accident grave (hautes températures, présence d’inhibiteurs, irradiation…) a été étudié pour les adsorbants les plus intéressants. Nous avons également cherché à mieux élucider les mécanismes de piégeage en utilisant à la fois une approche expérimentale (spectroscopie in situ) et théorique (DFT). D’une manière générale, nous avons trouvé que les capacités d’adsorption pour CH3I dépendent surtout de la quantité des sites argent présents à l’état dispersé dans la charpente sous forme de cations Ag+ et de petits clusters, mais également de paramètres structuraux tels que la taille des pores. D’autre part, une méthodologie particulière a été développée afin de quantifier les différentes formes piégées et ainsi de mieux comprendre l’effet des paramètres structuraux sur la stabilité thermique du piégeage, notamment sous forme de précipités AgI. Il a été montré que la stabilité du piégeage est fortement influencée par le taux d’échange et par la nature de la structure zéolithique. La combinaison des techniques spectroscopiques in situ infrarouges et UV-Vis a été également utilisée dans le but d’élucider le mécanisme de piégeage de CH3I par les zéolithes à l’argent. D’une part, la réactivité des espèces d’argent ainsi que leur transformation en AgI a été suivie par DR-UV-Vis. D’autre part, les schémas réactionnels mettant en jeu la partie carbonée ont été établis en utilisant la spectroscopie IR à la fois en phase adsorbée (DRIFTS) et en phase gazeuse (FTIR). La formation des précipités AgI est initiée à 100°C par la dissociation de CH3I (partielle à cette température) sur les sites acides de Brönsted de la zéolithe et les sites argent. Ensuite, des espèces moléculaires AgI puis des clusters (AgI)n sont formés dans les supercages de la structure faujasite. En présence d’humidité ou à des températures plus élevées, certains précipités AgI peuvent former des entités plus larges sur la surface externe (phase AgI détectée en DRX après test). D’autre part, la décomposition thermique et catalytique des espèces méthoxy donne lieu à la formation de nombreux sous-produits (MeOH, MeOMe, alcanes, alcènes…). Parmi tous les adsorbants testés, les zéolithes échangées Ag/Y ont affiché les meilleures performances de rétention. Des résultats encourageants en présence d’inhibiteurs, sous irradiation et aux faibles concentrations ont été également obtenus pour les zéolithes faujasites argentées (type Y). L’ensemble des résultats obtenus permet d’envisager l’utilisation de certaines formulations dans une application nucléaire type accident grave, mais également de développer de nouvelles connaissances notamment en ce qui concerne d’autres nouveaux adsorbants (Metal Organic Framework MOF et silices mésoporeuses argentées ou fonctionnalisées) / A severe nuclear accident (as Fukushima) may induce dramatic consequences in terms of radiological releases into the environment. The combination of current filtration devices (such as aqueous scrubbers and sand bed filters) with an additional filtration stage made of inorganic porous adsorbent (zeolite) constitute a promising solution in order to avoid the release of radioactive iodine species. The present study aims to establish some correlations between chemical and structural parameters of porous adsorbents mainly silver-zeolites, on the one hand, and adsorption properties towards I2 and CH3I on the other hand. The role played by various zeolitic parameters was assessed by combining adsorption data in gaseous phase (adsorption capacity, decontamination factors, trapping stability) together with physico-chemical data obtained from characterization studies (XRD, ATR/IR, DRIFTS of adsorbed CO, SEM, TEM and DR-UV-Vis). Then, the effect of adsorption temperatures, potential inhibitors and irradiation was also discussed for the most interesting adsorbents in order to extrapolate to severe accidental conditions. The trapping mechanism was also investigated using in-situ spectroscopic accessories as well as theoretical calculations by DFT. It was shown that CH3I adsorption capacities are mainly dependent on the amount of silver that could be deposited in dispersed form (as Ag+, and small clusters) within the internal framework, as well as structural parameters such as pore size. On the other hand, a specific methodology was applied in order to quantify the different forms of stored iodine and therefore to better assess the influence of structural parameters on the trapping thermal stability. It was found that the trapping stability is mainly dependent on silver exchange level and on the nature of zeolitic structure. For the first time, the combination of several spectroscopic techniques was also implemented. On the one hand, in situ Diffuse Reflectance UV-Vis Spectroscopy (DRS-UV-Vis) was employed in order to monitor the evolution of silver species during exposure to gaseous methyl iodide. On the other hand, the time- and temperature-evolution of organic species was investigated using in situ Diffuse Reflectance Infrared Fourier Transformed Spectroscopy (DRIFTS) combined with gas-phase reactor measurements. The first step is the dissociation of some CH3I molecules, which is catalyzed by the acidic and silver sites of the zeolite. The dissociated I is then captured by silver to form molecular and clustered AgI entities within the zeolite supercages, which can coalesce and sinter on the external surface upon prolonged exposure to humidity to form silver iodide precipitates (detected by XRD). On the other hand, the carbonaceous part of the CH3I molecules undergo successive catalytic transformations at medium temperatures with zeolite active sites, to yield different by-products (MeOH, DME, higher alkanes, alkenes…). Among all the investigated sorbents for iodine species retention, Ag/Y zeolites have displayed the best retention performances. Promising results were also found in the presence of inhibitors, under irradiation and for low concentrations. The obtained results allow to consider using some of the tested formulations for a nuclear severe accident application, but also to give insights about the behavior of other new adsorbents (Metal Organic Framework MOF and silver-impregnated or functionalized mesoporous silica)
5

Evaluate the contribution of the fuel cladding oxidation process on the hydrogen production from the reflooding during a potential severe accident in a nuclear reactor / Évaluer la contribution du processus d’oxydation du gainage combustible sur la production d’hydrogène issue du renoyage lors d’un éventuel accident grave dans un réacteur nucléaire

Haurais, Florian 14 November 2016 (has links)
En centrales nucléaires, un accident grave est une séquence très peu probable d’événements durant laquelle des composants du réacteur sont significativement endommagés, par interactions chimiques et/ou fusion, à cause de très hautes températures. Cela peut mener à des rejets radiotoxiques dans l’enceinte et à une entrée d’air dans le réacteur. Dans ce contexte, ce travail de thèse mené chez EDF R&D visait à modéliser la détérioration du gainage combustible, en alliages de zirconium, en conditions accidentelles : haute température et soit vapeur soit mélange air-vapeur. L’objectif final était d’améliorer la simulation par le code MAAP de l’oxydation du gainage et de la production d’hydrogène, en particulier pendant un renoyage avec de l’eau. Dû à l’épaississement progressif d’une couche de ZrO2 dense et protectrice, la cinétique d’oxydation du Zr en vapeur à hautes températures est généralement (sous-)parabolique. Cependant, à certaines températures, cette couche d’oxyde peut se fissurer, devenant poreuse et non protectrice. Par ce processus de « breakaway », la cinétique d’oxydation devient plus linéaire. De plus, l’augmentation de température peut mener les matériaux du réacteur à fondre et à se relocaliser dans le fond de cuve dont la rupture peut induire une entrée d’air dans le réacteur. Dans ce cas, l’oxygène et l’azote réagissent avec les gaines pré-oxydées, successivement par oxydation du Zr (épaississant la couche de ZrO2), nitruration du Zr (formant des particules de ZrN) et oxydation du ZrN (créant de l’oxyde et relâchant de l’azote). Ces réactions auto-entretenues relancent la fissuration du gainage et de sa couche de ZrO2, induisant une hausse de sa porosité ouverte. Afin de quantifier cette porosité du gainage, un protocole expérimental innovant en deux étapes a été défini et appliqué : il consistait à soumettre des échantillons de gainage en ZIRLO® à diverses conditions accidentelles pendant plusieurs durées puis à des mesures de la porosité ouverte par porosimétrie par intrusion de mercure. Les conditions de corrosion comprenaient plusieurs températures allant de 1100 à 1500 K ainsi que de la vapeur et un mélange air-vapeur 50-50 mol%. Pour les échantillons de ZIRLO® oxydés en vapeur, sauf à 1200 et 1250 K, les transitions de cinétique n’ont pas lieu et la porosité ouverte reste négligeable au cours de l’oxydation. Cependant, pour les autres échantillons, corrodés en air-vapeur ou oxydés en vapeur à 1200 ou 1250 K, des transitions « breakaway » sont observées et les résultats de porosimétrie montrent que la porosité ouverte augmente au cours de la corrosion, proportionnellement au gain en masse. De plus, il a été mis en évidence que la distribution de tailles de pores des échantillons de ZIRLO® s’étend significativement pendant la corrosion, en particulier après « breakaway ». En effet, ces tailles vont de 60 μm à environ : 2 μm avant la transition, 50 nm juste après et 2 nm plus longtemps après. Enfin, un modèle numérique en deux étapes a été développé dans le code MAAP pour améliorer sa simulation de l’oxydation du gainage. D’abord, grâce à la proportionnalité entre porosité ouverte et gain en masse des échantillons, des corrélations de porosité ont été implémentées pour chaque condition de corrosion. Ensuite, les valeurs de porosité calculées sont utilisées pour augmenter proportionnellement la vitesse d’oxydation du gainage. Ce modèle amélioré simule ainsi non seulement les réactions chimiques des gaines en Zr (oxydation et nitruration) mais aussi leur dégradation mécanique et son impact sur leur vitesse d’oxydation. Ceci a été validé en simulant des essais QUENCH (-06, -08, -10 et -16), conduits au KIT pour étudier le comportement de gaines dans des conditions accidentelles avec un renoyage final. Ces simulations montrent un meilleur comportement thermique du gainage et une production d’hydrogène significativement plus haute et donc plus proche des valeurs expérimentales, en particulier pendant le renoyage. / In nuclear power plants, a severe accident is a very unlikely sequence of events during which components of the reactor core get significantly damaged, through chemical interactions and/or melting, because of very high temperatures. This may potentially lead to radiotoxic releases in the containment building and to air ingress in the reactor core. In that context, this thesis work led at EDF R&D aimed at modeling the deterioration of the nuclear fuel cladding, made of zirconium alloys, in accidental conditions: high temperature and either pure steam or air-steam mixture. The final objective was to improve the simulation by the MAAP code of the cladding oxidation and of the hydrogen production, in particular during a core reflooding with water. Due to the progressive thickening of a dense and protective ZrO2 layer, the oxidation kinetics of Zr in steam at high temperatures is generally (sub-)parabolic. However, at certain temperatures, this oxide layer may crack, becoming porous and not protective anymore. By this “breakaway” process, the oxidation kinetics becomes rather linear. Additionally, the temperature increase can lead core materials to melt and to relocate down to the vessel lower head whose failure may induce air ingress into the reactor core. In this event, oxygen and nitrogen both react with the pre-oxidized claddings, successively through oxidation of Zr (thickening the ZrO2 layer), nitriding of Zr (forming ZrN particles) and oxidation of ZrN (creating oxide and releasing nitrogen). These self-sustained reactions enhance the cracking of the cladding and of its ZrO2 layer, inducing a rise of its open porosity.In order to quantify this cladding porosity, an innovative two-step experimental protocol was defined and applied: it consisted in submitting ZIRLO® cladding samples first to various accidental conditions during several time periods and then to measurements of the open porosity through porosimetry by mercury intrusion. The tested corrosion conditions included numerous temperatures ranging from 1100 up to 1500 K as well as both pure steam and a 50-50 mol% air-steam mixture. For the ZIRLO® samples oxidized in pure steam, except at 1200 and 1250 K, the “breakaway” kinetic transitions do not occur and the open porosity remains negligible along the oxidation process. However, for all other samples, corroded in air-steam or oxidized in pure steam at 1200 or 1250 K, “breakaway” transitions are observed and the porosimetry results show that the open porosity increases along the corrosion process, proportionally to the mass gain. Moreover, it was evidenced that the pore size distribution of ZIRLO® samples significantly extends during corrosion, especially after “breakaway” transitions. Indeed, the detected pore sizes ranged from 60 μm down to around: 2 μm before the transition, 50 nm just after and 2 nm longer after. Finally, a two-step numerical model was developed in the MAAP code to improve its simulation of the cladding oxidation. First, thanks to the proportionality between open porosity and mass gain of cladding samples, porosity correlations were implemented for each tested corrosion condition. Second, the calculated porosity values are used to proportionally enhance the cladding oxidation rate. This improved model thus simulates not only chemical reactions of Zr-based claddings (oxidation and nitriding) but also their mechanical degradation and its impact on their oxidation rate. It was validated by simulating QUENCH tests (-06, -08, -10 and -16), conducted at KIT to study the behavior of claddings in accidental conditions with a final reflooding. These simulations show a better cladding thermal behavior and a hydrogen production significantly higher and so closer to experimental values, in particular during the reflooding.

Page generated in 0.1037 seconds