1 |
Overall Technologies to Enhance Efficiency Accuracy in TurbinesDiego Sanchez de la Rosa (14159952) 28 November 2023 (has links)
<p dir="ltr">Transportation and energy production industries strongly rely on improvements in gas turbine performance. The quantification of these improvements is dependent on the accuracy of the measurements performed during testing. An increase of 0.5\% in efficiency is sufficient to secure a new development program worth millions of dollars, but in the case of temperature measurements, uncertainties below 0.5 K are required, which presents a challenge. This work selects heat flux estimation and total temperature measurement uncertainties as major contributors for efficiency uncertainty.</p><ul><li>Heat flux measurements are critical to evaluate the impact on the efficiency. Additionally, thermal fatigue in turbine airfoils defines the life cycle of the engine core. This work performs an estimation of the heat transfer via a simplified numerical model that uses infrared (IR) measurements in the surface of the casing to predict the temperature of the passage wall. The model is validated with real cool-down data of the turbine to yield results within a 10\% of the actual temperature.</li><li>Total temperature measurement suffers from errors due to heat transfer effects in the probe. Two dominant sources of errors are convection and conduction between the thermocouple wires, the probe support, and the flow. These effects can be treated in two different categories: the velocity error, created by a non-isentropic reduction of the flow velocity upstream the thermocouple junction, and the thermal equilibrium effects between the junction and the probe support, involving heat transfer through the wire to the shield and the probe stem due to temperature differences between each component (the so-called \emph{conduction error}). An open jet stand is used to evaluate the effects of velocity error at various Mach numbers. The conduction error is addressed with the design and manufacturing of dual-wire thermocouple probes. The readings from two wires with different length-to-diameter ratios are used to correct for the flow total temperature. This probe yielded a recovery factor of 0.99 +/- 0.01 at Mach 0.6.</li></ul><p></p>
|
2 |
Simulation and Optimal Design of Nuclear Magnetic Resonance ExperimentsNie, Zhenghua 10 1900 (has links)
<p>In this study, we concentrate on spin-1/2 systems. A series of tools using the Liouville space method have been developed for simulating of NMR of arbitrary pulse sequences.</p> <p>We have calculated one- and two-spin symbolically, and larger systems numerically of steady states. The one-spin calculations show how SSFP converges to continuous wave NMR. A general formula for two-spin systems has been derived for the creation of double-quantum signals as a function of irradiation strength, coupling constant, and chemical shift difference. The formalism is general and can be extended to more complex spin systems.</p> <p>Estimates of transverse relaxation, R<sub>2</sub>, are affected by frequency offset and field inhomogeneity. We find that in the presence of expected B<sub>0</sub> inhomogeneity, off-resonance effects can be removed from R<sub>2</sub> measurements, when ||omega||<= 0.5 gamma\,B<sub>1</sub> in Hahn echo experiments, when ||omega||<=gamma\,B<sub>1</sub> in CPMG experiments with specific phase variations, by fitting exact solutions of the Bloch equations given in the Lagrange form.</p> <p>Approximate solutions of CPMG experiments show the specific phase variations can significantly smooth the dependence of measured intensities on frequency offset in the range of +/- 1/2 gamma\,B<sub>1</sub>. The effective R<sub>2</sub> of CPMG experiments when using a phase variation scheme can be expressed as a second-order formula with respect to the ratio of offset to pi-pulse amplitude.</p> <p>Optimization problems using the exact or approximate solution of the Bloch equations are established for designing optimal broadband universal rotation (OBUR) pulses. OBUR pulses are independent of initial magnetization and can be applied to replace any pulse of the same flip angles in a pulse sequence. We demonstrate the process to exactly and efficiently calculate the first- and second-order derivatives with respect to pulses. Using these exact derivatives, a second-order optimization method is employed to design pulses. Experiments and simulations show that OBUR pulses can provide more uniform spectra in the designed offset range and come up with advantages in CPMG experiments.</p> / Doctor of Philosophy (PhD)
|
Page generated in 0.0695 seconds