• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DEVELOPMENT OF A LASER LIFETIME PRESSURE-SENSITIVE PAINT METHOD FOR TURBINE ANALYSIS

Papa Aye Nyansafo Aye-Addo (11811563) 19 December 2021 (has links)
<p>To increase overall aircraft engine efficiency, the diameter of the high-pressure turbine is reduced, leading to low aspect ratio airfoils. Secondary flow dominates in these low aspect ratio turbines, and the small airfoil geometry inhibits flush-mounted, full-spatial dynamic pressure measurements with pressure transducers. Airfoil surface pressure measurements are vital to understanding the inherently unsteady flow phenomena in turbines. Additionally, aerodynamic performance data derived from high-resolution surface pressure measurements provide invaluable data for validating computational fluid dynamics codes used for prediction. Non-intrusive measurement techniques such as fast-responding Pressure Sensitive Paint (PSP) offer a potential solution of a full-field optical measurement of surface pressure fluctuation, with each camera pixel representing a sensor. The porous binder improves the dynamic response of PSP, making it suitable for unsteady flow environments such as turbomachinery applications. In this view, the overall objective of the current doctoral research is to develop a lifetime PSP method using laser-based excitation for surface pressure measurement on a new class of high-pressure turbines. </p> <p>The overall research goal was subdivided into three main strategies. (1) A pulse lifetime calibration procedure of a porous polymer/ceramic binder PSP was developed in a pressure-controlled chamber to assess the correlation between pressure and time-resolved luminescent lifetime, pressure sensitivity, and signal-to-noise ratio. (2) The lifetime technique was implemented for surface pressure measurements in a linear test section to measure high spatial pressure gradients and resolve unsteady flow features. A data reduction routine and an optimal binning bundle of pixels were proposed for calibration analysis to reduce the overall pressure uncertainty. Uncertainty quantification and sensitivity analysis were also completed to determine the parameters with a substantial effect on the pressure uncertainty. (3) The pulse lifetime method was demonstrated on a high-pressure turbine vane suction surface at engine representative conditions. The surface pressure data were corroborated with static pressure tappings and computational simulations. This research effort provided new insights into time-resolved luminescent lifetime PSP techniques. Steady and unsteady flow features from surface pressure measurements were identified using a precise calibration method. The lifetime pulse method was effective in a high-pressure turbine flow field, paving the way for back-to-back PSP experiments with different turbine geometries. </p>
2

Overall Technologies to Enhance Efficiency Accuracy in Turbines

Diego Sanchez de la Rosa (14159952) 28 November 2023 (has links)
<p dir="ltr">Transportation and energy production industries strongly rely on improvements in gas turbine performance. The quantification of these improvements is dependent on the accuracy of the measurements performed during testing. An increase of 0.5\% in efficiency is sufficient to secure a new development program worth millions of dollars, but in the case of temperature measurements, uncertainties below 0.5 K are required, which presents a challenge. This work selects heat flux estimation and total temperature measurement uncertainties as major contributors for efficiency uncertainty.</p><ul><li>Heat flux measurements are critical to evaluate the impact on the efficiency. Additionally, thermal fatigue in turbine airfoils defines the life cycle of the engine core. This work performs an estimation of the heat transfer via a simplified numerical model that uses infrared (IR) measurements in the surface of the casing to predict the temperature of the passage wall. The model is validated with real cool-down data of the turbine to yield results within a 10\% of the actual temperature.</li><li>Total temperature measurement suffers from errors due to heat transfer effects in the probe. Two dominant sources of errors are convection and conduction between the thermocouple wires, the probe support, and the flow. These effects can be treated in two different categories: the velocity error, created by a non-isentropic reduction of the flow velocity upstream the thermocouple junction, and the thermal equilibrium effects between the junction and the probe support, involving heat transfer through the wire to the shield and the probe stem due to temperature differences between each component (the so-called \emph{conduction error}). An open jet stand is used to evaluate the effects of velocity error at various Mach numbers. The conduction error is addressed with the design and manufacturing of dual-wire thermocouple probes. The readings from two wires with different length-to-diameter ratios are used to correct for the flow total temperature. This probe yielded a recovery factor of 0.99 +/- 0.01 at Mach 0.6.</li></ul><p></p>
3

Stability Enhancement in Aeroengine Centrifugal Compressors using Diffuser Recirculation Channels

Mark Yuriy Shapochka (13272837) 22 August 2022 (has links)
<p>The objective of this research was to develop stability enhancing design features for aeroengine centrifugal compressors. The motivation for this research is based on climate change and fuel-efficiency concerns, which call for improvements in achievable pressure ratios and surge margins. Specifically, this research aimed to develop diffuser recirculation channels and provide more insight into their design space. These channels are passive casing treatments in the diffuser and have been successfully demonstrated to improve stage surge margin. Diffuser recirculation channels are secondary flow paths that connect an opening near the diffuser inlet to one further down in the passage. Flow is recirculated by relieving the static pressure differential between the two openings. The basic design concept of these features is to add blockage upstream of the diffuser inlet, reducing the amount of diffusion in the vaneless space. In addition, channel geometries can be optimized to specifically target adverse flow properties, such as high incidence on the diffuser vane leading edge.</p> <p><br></p> <p>This design development was purely computational and served as the first approach to implementation of these features in a future generation of the Centrifugal Stage for Aerodynamic Research (CSTAR) at the Purdue Compressor Research Lab. Design development consisted of a computational design study, which quantified the effects of changing diffuser recirculation channel geometries on stage stability and performance metrics. Moreover, the CFD model for this future configuration of CSTAR was created and served as the baseline comparison for design iterations. The design study was comprised of controlled variation of channel geometry parameters and iterative solving of those cases in unsteady full stage single passage CFD models. Further design optimization studies were completed on specific down-selected recirculation channel geometry configurations. In total, 16 unsteady CFD cases with varied geometry configurations and 43 steady models were solved. Once a final optimized design was confirmed, a pressure characteristic at 100 % corrected design speed was generated. Compared to the baseline speed line, the implementation of diffuser recirculation channels resulted in a more gradual numerical surge and apparent numerical surge margin enhancement. Furthermore, the variation in incidence at the diffuser vane leading edge near the shroud was significantly reduced with diffuser recirculation. For the baseline compressor, incidence grew by about 70 degrees from the design aerodynamic loading to numerical surge at that location. However, flow stabilization due to diffuser 16 recirculation resulted in a change of approximately 2 degrees through that range. In conclusion, a first approach design recommendation for diffuser recirculation channels is CSTAR was generated through computational studies. Using this recommendation, diffusers with this recirculation channel design can be manufactured and tested for experimental concept validation.  </p>

Page generated in 0.5721 seconds