• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 363
  • 71
  • 52
  • 31
  • 26
  • 25
  • 18
  • 15
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 697
  • 192
  • 170
  • 113
  • 76
  • 75
  • 65
  • 64
  • 60
  • 59
  • 57
  • 56
  • 56
  • 54
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Actin nanokinematics under the influence of DC electric fields

Chilakamarri, Raghu. January 2005 (has links)
Thesis (M.S.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains viii, 97 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 87-88).
22

Analysis of the small GTP binding protein Rac2

Snodgrass, Meagan Alyssa. January 2005 (has links) (PDF)
Thesis (M.S.)--Montana State University--Bozeman, 2005. / Typescript. Chairperson, Graduate Committee: Algirdas J. Jesaitis. Includes bibliographical references (leaves 75-80).
23

Charakterisierung von NUANCE, einem Protein der [alpha]-Aktinin-Superfamilie [Alpha-Aktinin-Superfamilie]

Libotte, Thorsten. January 2004 (has links) (PDF)
Köln, Universiẗat, Diss., 2004.
24

The role of actin in hyphal tip growth : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry in the University of Canterbury /

Suei, Sandy H. Y. January 2008 (has links)
Thesis (Ph. D.)--University of Canterbury, 2008. / Typescript (photocopy). Two offprints bound in the back. Includes bibliographical references (leaves 142-162). Also available via the World Wide Web.
25

Novel concepts of microtubule regulation during axon growth and maintenance

Qu, Yue January 2015 (has links)
Axons are up-to-a-meter-long cable-like cellular processes of neurons. The proper function of nervous systems requires that axons grow and wire up correctly during development or regeneration. The uniquely challenging architecture of axons has to be sustained for an organism's lifetime, and renders them key lesion sites during healthy ageing, in injury and neurodegenerative diseases. Notably, axon degeneration is considered as the cause rather than consequence for neuron decay in the context of various neurodegenerative diseases. The structural backbones of axons are formed by parallel bundles of microtubules (MTs) which also provide the highways for life-sustaining long-distance transport between cell bodies and the growth cones or synaptic endings. To better understand axon development, regeneration, maintenance and degeneration during ageing, my PhD project has focused on mechanisms underpinning the regulation of MT bundles in axons. For this, I have capitalised on fast and genetically and experimentally amenable research possible in Drosophila neurons, both in primary culture and in vivo. I have used systematic combinatorial genetics and pharmacological approaches to unravel mechanisms and roles of actin as well as the cortical collapse factor Efa6 in MT regulation during axon formation and maintenance. I was able to gain a number of novel mechanisms contributing to the de novo alignment and maintenance of ordered MT bundles. First, it has been proposed that Spectraplakins (large actin-microtubule linkers) guide the extension of polymerising MTs along cortical F-actin, thus directly laying axonal MTs out into parallel bundles. Here, I have used manipulations of actin networks as well as hybrid constructs of Shot where the actin binding domain was replaced by actin associating domains of other molecules. My data strongly suggest that Shot's ABD domain has unique properties that can sense specific properties of F-actin networks, and this is important for its ability to appropriately regulate MT behaviours. Second, using combinations of actin and Shot manipulations, I found that Shot displays not only these actin-dependent guidance functions, but it displays novel actin-independent function in MT bundle maintenance for which I present a working hypothesis. Third, I found a novel and Shot-independent role of axonal actin in maintaining MTs and promoting axon growth, and my results suggest that these functions involve promotion of MT polymerisation. MT maintenance is therefore mediated through two complementary mechanisms involving Shot on the one hand and actin on the other, and simultaneous removal of Shot and actin leads to entire loss of axons. Finally, I have unravelled novel axonal functions of the cortical collapse factor Efa6 which serves as a check point in MT bundle maintenance by eliminating "off track" MTs that have escaped the axonal bundle organisation. In the absence of this factor, a gradual increase of disorganised, criss-crossed MTs occurs as a matter of days. These new mechanisms strongly suggest that different MT-regulatory mechanisms act in parallel in axons and complement each other in one common mechanism of MT bundle formation and maintenance. I propose here a local homeostasis model of axonal MT bundle maintenance which provides new ways to think about problems of ageing as well as a range of different neurodegenerative diseases.
26

Conformational Changes of Arp2/3 Complex in the Branched Actin Nucleation Pathway

Rodnick-Smith, Max 27 October 2016 (has links)
Branched actin networks play an important role in cellular processes ranging from cell motility, endocytosis, and adhesion. The Actin-related protein 2/3 (Arp2/3) complex nucleates actin branches from the sides of existing actin filaments. Arp2/3 complex is highly regulated and requires association with ATP, actin monomers, actin filaments and a class of proteins called nucleation promoting factors (NPFs) to undergo an activating conformational change where the actin-related subunits, Arp2 and Arp3, arrange into a filament-like conformation that templates a new actin branch. While some progress has been made, the individual roles of each of these factors on the activating conformational change is poorly understood. In addition, it is still unclear how Arp2/3 complex is held in its inactive state, which is vital for understanding how activation occurs. In this dissertation, we dissect key interfaces in Arp2/3 complex that are responsible for holding it in an inactive state, and specifically evaluate the roles of ATP and WASP, the canonical NPF, in the activating conformational change of Arp2/3 complex. In chapter II, we investigated the contacts made between the Arp2 and Arp3 subunits in their inactive state, and the role of ATP in stimulating the active conformation. We found that two key interfaces, the αE/αF loop in Arp2 and the C-terminus of Arp3, a conserved extension not present in actin, are vital for holding Arp2/3 complex in its autoinhibited state. Evaluation of the role of ATP demonstrated that binding of ATP is required for the activating conformational change and displaces the Arp3 C-terminus, an important step in destabilization of the inactive state. In chapter III, we investigated the mechanism of WASP-induced conformational changes using an engineered crosslinking assay that only forms crosslinks when Arp2/3 is in its active conformation. We discovered that many WASP-related proteins are capable of stimulating this conformational change through a mechanism that involves displacement of the Arp3 C-terminus. Interestingly, purified Arp2/3 complex crosslinked in the active conformation was hyperactive compared to WASP-mediated activation, demonstrating that WASP activation limits nucleation and that actin monomer delivery is not required for nucleation. This dissertation contains unpublished co-authored material.
27

Studies on the Evolutionary Relationships of Aldolase, Glyceraldehyde-3-Phosphate Dehydrogenase, and Actin from the Muscle of A̲s̲c̲a̲ṟi̲s̲ Su̲u̲m̲ and Actin-Aldolase Interactions in Rabbit Muscle

Dedman, John R. 12 1900 (has links)
Procedures for the isolation and characterization of Ascaris glyceraldehyde-3-phosphate dehydrogenase and actin are described. The properties of these proteins, including molecular weights, isoelectric points, kinetics, peptide maps, and amino acid compositions, are strikingly similar to the respective proteins from rabbit muscle.
28

The Role of the Actin Cytoskeleton in Asymmetric Cell Division in Maize

Alhassan, Hassan Hamdan 08 1900 (has links)
Stomata are specialized plant structures required for gaseous exchange with the outer environment. During stomata formation, the cytoskeleton plays an important role in controlling the division of the individual cells leading to the generation of the stomata complex. Two mutants that affect microfilament and microtubule organization in subsidiary mother cells include brk1 and dcd1. While only 20% of the subsidiary cells in the brk1 and dcd1 single mutants are abnormally shaped, it was reported that there is a synergistic effect between the brk1 and dcd1 mutations in the brk1; dcd1 double mutant since 100% of the subsidiary cells are abnormal. The focus of this research is to try to understand this synergistic effect by investigating the actin cytoskeleton and nuclear position in the single and double mutants. The reported results include the observation that the size of actin patch was largest in the wild-type subsidiary mother cells (SMCs) and smallest in dcd1 and brk1; dcd1 SMCs and that brk1 and brk1; dcd1 double mutants had fewer actin patches than wild-type and dcd1 SMCs. Additionally, we observed that some SMCs that did not have actin patches still underwent nuclear migration suggesting that nuclear migration may not be solely dependent on actin patch formation. Finally, during SMC cytokinesis, a large percentage of double mutant (brk1; dcd1) cells showed an off-track development of the phragmoplast as compared to the single mutants and the wild-type plant explaining the large number of abnormally shaped subsidiary cells in the double mutants.
29

Insights into the allosteric interactions within the actin molecule

Stokasimov, Ema 01 December 2009 (has links)
Actin's ability to engage in a wide range of physiological functions requires that it be subject to complex spatial and temporal regulation. This regulation is achieved internally through monomer-monomer contacts and externally through interactions with actin binding proteins. The first part of my thesis focused on better understanding the role of inter-monomeric ionic interactions proposed between subdomains 2 and 3 of opposing monomers in F-actin stabilization. I studied several yeast actin mutants: A167R to disrupt a proposed ionic attraction with R39, A167E to mimic a proposed ionic attraction in muscle actin, and D275R to disrupt a proposed ionic attraction with R39. I investigated the effects of mutations in vivo, effects on filament polymerization characteristics and appearance in vitro, as well as interaction of the mutants with the filament severing protein cofilin. While both in vivo and in vitro data demonstrated the importance of the R39-D275 interaction for yeast actin and the interaction of the filament with cofilin, disruption of this interaction alone did not cause filament fragmentation. Conversely, results with A167 do demonstrate the in vivo and in vitro importance of another potential R39 ionic interaction for filament stabilization. In the second part of my work I used amide proton hydrogen/deuterium (HD) exchange detected by mass spectrometry as a tool to gain structural insight into yeast and muscle actin and profilin isoform differences and the actin-profilin interaction. The yeast and muscle actin HD analysis showed greater exchange for yeast G-actin compared to muscle actin in the barbed end pivot region and areas in subdomains 1 and 2, and for F-actin in monomer-monomer contact areas. These results suggest greater flexibility of the yeast actin monomer and filament compared to muscle actin. For yeast-muscle hybrid G-actins, the muscle-like and yeast-like parts of the molecule generally showed exchange characteristics resembling their parent actins. There were a few exceptions to this rule, however: a peptide on top of subdomain 2 and the pivot region between subdomains 1 and 3. These exhibited muscle actin-like exchange characteristics even though the areas were yeast-like, suggesting that there is crosstalk between subdomains 1 and 2 and the large and small domains. Hybrid F-actin data showing greater exchange compared to both yeast and muscle actins are consistent with mismatched yeast-muscle actin interfaces resulting in decreased stability of the hybrid filament contacts. Actin-profilin HD exchange results demonstrated a possible differential interaction of specific profilin isoforms with specific actin isoforms. While profilin binding mostly caused a decreased exchange for yeast actin peptides, it caused an increase in exchange for muscle actin peptides. Many of the changes observed were in peptides that line or contact the nucleotide cleft, consistent with profilin's ability to alter the kinetics of nucleotide exchange.
30

Role of cyclase-associated protein 2 in platelet function and description of an inherited macrothrombocytopenia / Rolle von cyclase-associated protein 2 in der Thrombozytenfunktion und Beschreibung einer erblich bedingten Makrothrombozytopenie

Heck, Johannes January 2019 (has links) (PDF)
Cyclase-associated protein (CAP)2 is an evolutionarily highly conserved actin-binding protein implicated in striated muscle development, carcinogenesis, and wound healing in mammals. To date, the presence as well as the putative role(s) of CAP2 in platelets, however, remain unknown. Therefore, mice constitutively lacking CAP2 (Cap2gt/gt mice) were examined for platelet function. These studies confirmed the presence of both mammalian CAP isoforms, CAP1 and CAP2, in platelets. CAP2-deficient platelets were slightly larger than WT controls and displayed increased GPIIbIIIa activation and P-selectin recruitment in response to the (hem)ITAM-specific agonists collagen-related peptide and rhodocytin. However, spreading of CAP2-deficient platelets on a fibrinogen matrix was unaltered. In conclusion, the functionally redundant CAP1 isoform may compensate for the lack of CAP2 in murine platelets. Moreover, the studies presented in this thesis unveiled a severe macrothrombocytopenia that occurred independently of the targeted Cap2 allele and which was preliminarily termed orphan (orph). Crossing of the respective mice to C57BL/6J wild-type animals revealed an autosomal recessive inheritance. Orph mice were anemic and developed splenomegaly as well as BM fibrosis, suggesting a general hematopoietic defect. Strikingly, BM MKs of orph mice demonstrated an aberrant morphology and appeared to release platelets ectopically into the BM cavity, thus pointing to defective thrombopoiesis as cause for the low platelet counts. Orph platelets exhibited marked activation defects and spread poorly on fibrinogen. The unaltered protein content strongly suggested a defective alpha-granule release to account for the observed hyporesponsiveness. In addition, the cytoskeleton of orph platelets was characterized by disorganized microtubules and accumulations of filamentous actin. However, further experiments are required to elucidate the activation defects and cytoskeletal abnormalities in orph platelets. Above all, the gene mutation responsible for the phenotype of orph mice needs to be determined by next-generation sequencing in order to shed light on the underlying genetic and mechanistic cause. / Cyclase-associated protein 2 (CAP)2 ist ein evolutionär hoch konserviertes Aktin-bindendes Protein, welches in der Entwicklung der quergestreiften Muskulatur, der Krebsentstehung und der Wundheilung von Säugetieren eine Rolle spielt. Bis heute sind jedoch das Vorhandensein sowie die mutmaßliche(n) Funktion(en) von CAP2 in Thrombozyten unbekannt. Aus diesem Grund wurden Mäuse, denen konstitutiv CAP2 fehlt (Cap2gt/gt-Mäuse), im Hinblick auf ihre Thrombozytenfunktion untersucht. Diese Untersuchungen bestätigten die Anwesenheit beider Säugetierisoforme von CAP, CAP1 und CAP2, in Thrombozyten. CAP2-defiziente Thrombozyten waren geringfügig größer als WT-Kontrollen und zeigten eine erhöhte GPIIbIIIa-Aktivierung und P-Selektin-Rekrutierung nach Stimulation durch die (hem)ITAM-spezifischen Agonisten collagen-related peptide und Rhodozytin. Demgegenüber verlief die Adhäsion (sog. spreading) CAP2-defizienter Thrombozyten auf einer Fibrinogen-Matrix unverändert. Dies legt den Schluss nahe, dass die funktionell redundante CAP1-Isoform in der Lage ist, den Mangel an CAP2 in Mäusethrombozyten zu kompensieren. Darüber hinaus offenbarten die in dieser Dissertation präsentierten Untersuchungen eine schwere Makrothrombozytopenie, welche unabhängig von dem veränderten Cap2-Allel auftrat und welche vorläufig als orphan (orph) bezeichnet wurde. Das Kreuzen der entsprechenden Mäuse mit C57BL/6J-Wildtyp-Tieren enthüllte einen autosomal rezessiven Erbgang. Orph-Mäuse waren anämisch und entwickelten eine Milzvergrößerung sowie eine Knochenmarkfibrose, was einen generellen hämatopoetischen Defekt nahelegte. Bemerkenswerterweise waren Knochenmarksmegakaryozten von orph-Mäusen morphologisch auffällig und gaben allem Anschein nach Thrombozyten ektop in das Knochenmarkstroma ab, was auf eine defekte Thrombopoese als Ursache für die niedrigen Thrombozytenzahlen hindeutet. Orph-Thrombozyten zeigten ausgesprochene Aktivierungsdefekte und adhärierten kaum auf Fibrinogen. Der unveränderte Gehalt an Proteinen lenkte den Verdacht auf eine defekte Exozytose von Alpha-Granula als Ursache der Mindererregbarkeit. Des Weiteren war das Zytoskelett von orph-Thrombozyten durch unorganisierte Mikrotubuli und Akkumulationen von filamentösem Aktin charakterisiert. Weitere Experimente sind jedoch notwendig, um die Aktivierungsdefekte und die Zytoskelettveränderungen aufzuklären. Vor allem aber muss die Genmutation, welche für den Phänotyp der orph-Mäuse verantwortlich ist, mittels Sequenziermethoden der nächsten Generation (next-generation sequencing) aufgeklärt werden um Aufschluss über die zugrunde liegende genetische und mechanistische Ursache zu geben.

Page generated in 0.053 seconds