Spelling suggestions: "subject:"actinidia"" "subject:"actiniden""
1 |
Molecular analysis of actinidinPräkelt, Uta M. January 1987 (has links)
Actinidin, the 23.6 kDa cysteine proteinase of Chinese gooseberry (Actinidia chinensis), is present at high concentration in fruits. A fruit-specific cDNA library was established and screened by differential hybridisation and using a synthetic oligonucleotide. Two of ten actinidin clones identified were characterised by sequence analysis. The two very similar cDNAs code for proteins with approximately 90% sequence homology to the published amino acid sequence of actinidin, as well as an additional 25 amino acids following the mature carboxyl terminus. The larger clone in addition has coding potential for 57 residues of an amino-terminal extension with considerable homology to amino-terminal sequences of other cysteine proteinases. From size determinations of both mRNA (1.4 kb) and immunoprecipitated in vitro translation product (39 kDa) it was estimated that actinidin is synthesised as a precursor approximately 15 kDa larger than the mature protein. Features of the prosegment primary sequence are considered with regard to a possible mechanism of inactivation of the proteinase, by analogy with other proteolytic zymogens. The presence of three potential glycosylation sites, one within the carboxy-terminal and two in the amino-terminal extension are consistent with subcellular location of the enzyme within membrane-bound organelles. Results from a Southern blot show that actinidin is encoded by a multigene family of up to ten members. Actinidin gene expression, both at the level of mRNA and protein, is largely restricted to the fruit of A. chinensis, where the level of actinidin mRNA accumulates early during development.
|
2 |
The effect of pre-rigor infusion of lamb with kiwifruit juice on meat qualityHan, Jin January 2008 (has links)
Tenderness, juiciness, colour and flavour are the most important meat quality attributes affecting the consumer acceptance. Maintaining the consistency of meat products by avoiding variable quality has become a major concern and great challenge to the meat industry. This in turn will also benefit meat end-users in the marketplace by having more tender meat. The present study was designed to evaluate the overall effects of pre-rigor infusion with kiwifruit juice, which contains the plant protease, actinidin, on lamb quality. A total of 18 lambs (12 months old) were divided into three treatment groups (6 lambs per each treatment). After exsanguination, lamb carcasses were infused (10% body weight) with fresh kiwifruit juice (Ac), water (W) and compared with a noninfusion treatment which acted as a control (C). Samples from different muscle/cuts (longissimus dorsi (LD) vs leg chops) at different post-mortem times (1 day post-mortem vs. 3 wks vacuum packaged storage at 2°C) and display time (0 to 6 days after the post-mortem storage) were analysed to monitor the changes on meat physical properties (e.g., tenderness, temperature, drip and cooking loss, colour), biochemical changes (pH, proteins and lipids) and volatile flavour compounds after the infusion treatments. The most tender meat (lowest shear force values) (P < 0.001) detected in the Ac carcasses post-mortem compared with C and W carcasses demonstrated that kiwifruit juice was a very powerful meat tenderizer, and could contribute to the meat tenderization process efficiently and effectively. Compared with C and W carcasses, the enhanced proteolytic activity (P = 0.002) resulting from the actinidin in kiwifruit juice in Ac carcasses caused degradation of the myofibrillar proteins and the appearance of new peptides during postmortem ageing. A slight positive effect in a*-value (redness) and decreased lipid oxidation, found in leg chops, was thought to be caused by the natural antioxidants in kiwifruit juice. Kiwifruit juice infused into the meat did not alter (P > 0.05) the volatile flavour compound profile indicating that the meat from Ac treated carcasses maintained its natural lamb flavour. No treatment differences were found for the temperature decline (P > 0.05) between the infused treatments and C. The higher rate of pH decline (P < 0.05) found in W carcasses might have contributed to the higher drip and cooking loss. The unbound water in meat might contribute to the higher L*-values (lightness) found in W carcasses. In summary, the proteolytic tenderizing infusion treatment using kiwifruit juice is a feasible approach for the commercial meat industry to increase profits, and also could satisfy the eating quality standards required by the consumers. In addition, tenderizing meat by using kiwifruit juice could also provide the kiwifruit processors an additional option for use of their product to gain a more profitable return.
|
Page generated in 0.0511 seconds