• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 14
  • 14
  • 13
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 142
  • 142
  • 142
  • 90
  • 51
  • 26
  • 23
  • 21
  • 20
  • 20
  • 18
  • 17
  • 16
  • 16
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Étude fonctionnelle de l'AMP-activated protein kinase chez l'huître creuse Crassostrea gigas / Elements implicated in the energypathway of the AMP-activated protein kinase of the Pacific oyster Crassostrea gigas

Guévélou, Éric 19 December 2012 (has links)
L’objectif de cette thèse était de caractériser les éléments appartenant à la voie de signalisation énergétique AMP-activated protein kinase chez l’huître creuse Crassostrea gigas afin de comprendre son implication dans la gestion de l’énergie, en particulier en réponse à des conditions physiologiques qui sollicitent de l’énergie telles que la reproduction, ou à des stress environnementaux comme l’hypoxie ou le jeûne. Au niveau génomique, les trois sous-unités constitutives du trimère AMPK ainsi que plusieurs éléments impliqués dans cette voie de signalisation et dans les métabolismes glucidiques et lipidiques, potentiellement cibles de l’AMPK, ont été décrits. Au niveau protéique, plusieurs anticorps hétérologues ciblant les isoformes de la sous-unité α et la phosphorylation du résidu thréonine 172 de la sous-unité α, témoin indirect de l’activité AMPK, ont été utilisés. Deux sous-unités α tronquées dans le domaine kinase ont été caractérisées principalement dans les tissus musculaires suggérant leurs implications dans la fonction musculaire. Au cours d’un stress hypoxique, une augmentation significative des quantités de sous-unités α tronquées a été observée dans le muscle lisse. Ce résultat suggère que pendant une durée d’au moins 6 h, ces protéines tronquées sont nécessaires au maintien du métabolisme aérobie dans le muscle lisse, lui permettant ainsi de remplir son rôle de fermeture statique des valves. Nous avons suggéré une hypothèse indiquant que l’accumulation in vivo de ces sous-unitésα tronquées pourrait exercer un rôle de modulation ou de transdomination négative de l’activité de la sous-unité α entière. Dans la gonade, nous avons observé une activation de l’AMPK tout au long du processus de gamétogénèse afin de supporter les processus cataboliques de création de gamètes. Une diminution de cette activation a été observée lors du stade anabolique de mise en réserve des ovocytes. Enfin, lors d’un conditionnement en milieu contrôlé, une approche physiologique par privation de nourriture et une approche pharmacologique par injection d’AICAR ont été réalisées pour provoquer une modulation de l’AMPK. Les analyses ont montré que ni le jeûne ni l’AICAR n’ont induit une augmentation de la phosphorylation de la sous-unité α. Cependant, plusieurs changements liés à l’injection de l’AICAR ont été observés sur la physiologie de l’huître : la modification du rapport AMP:ATP chez les huîtres nourries en comparaison aux huîtres à jeun, et une mortalité dépendante de la dose injectée d’AICAR chez les huîtres mises à jeun. La caractérisation de l’AMPK chez C. gigas ouvre de nombreuses perspectives exigeant des études fonctionnelles poussées afin de démontrer le rôle pivot de cette kinase dans la gestion de l’énergie, comme démontré chez de nombreuses espèces de vertébrés, et ainsi décrypter le métabolisme énergétique de l’huître. / The objective of this thesis was to characterize elements implicated in the energypathway of the AMP-activated protein kinase of the Pacific oyster Crassostrea gigas. Thecharacterization of the elements was performed in the scope of understanding their involvementin energy management, particularly in response to physiological conditions requiring energy, asreproduction or environmental stress, such as hypoxia or fasting.At genomic level, the three subunits of AMPK trimer and several elements involved inAMPK signaling pathway and in carbohydrate and lipid metabolism, supposedly under AMPKcontrol, were described. Additionally, at proteomic level, several heterologous antibodiestargeting AMPKα subunit isoforms and threonine 172 phosphorylation site of AMPKα subunit,indirect witness of AMPK activity, were assayed. Two truncated α subunits in the kinase domainwere characterized essentially in muscles, suggesting their involvement in muscle function.During a hypoxic stress, a significant increase of truncated α subunits protein amount wasobserved in smooth muscle. These results suggest that, for a period of at least 6 h, thesetruncated subunits are necessary for the maintenance of aerobic metabolism in smooth muscle ofC. gigas, allowing it to fulfill its static closing valves. We suggested that in vivo accumulation oftruncated AMPKα could serve as modulator or as transdominant negative regulator of the fulllengthAMPKα activity. In the gonad, AMPK appeared to be activated through the process ofgametogenesis, in order to support the catabolic processes of gametes creation. During theanabolic phase, when oocyte reserves were created, a signal disruption was observed. Finally,during controlled experiment, a physiological approach by food deprivation and apharmacological approach using AICAR injections were performed to modulate AMPK signal.This analysis showed that neither fasting nor AICAR induced an increase of AMPKphosphorylation, as expected. Although, several changes related to AICAR injection wereobserved in oysters physiology, such as the change of the AMP:ATP ratio in fed oysters and aAICAR dose-related mortality in fasting oysters. AMPK characterization in C. gigas opens newperspectives demanding extensive functional studies to establish the key role of AMPK in energymanagement, as demonstrated in vertebrates’ species, in order to understand the oyster’s energymetabolism.
22

Centrosome integrity as a determinant of replication stress

Tayeh, Zainab 16 January 2020 (has links)
No description available.
23

The effect of MKP-1 inhibition on the cytotoxicity of chemotherapeutic drugs in breast cancer

Le Roux, Heloise 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Introduction: Cancer is an emerging health problem in South Africa, with breast cancer being one of the leading cancers affecting women globally. Therefore, there is a need to find novel targets to improve the therapeutic options for these patients. A recently proposed target is the mitogen-activated protein kinase phosphatase-1 (MKP-1). Studies have suggested that mitogen-activated protein kinase phosphatases are involved in the development of cancer and play an important role in the response of cancer cells to chemotherapy. Additionally, numerous studies have indicated that there is increased expression of MKP-1 in breast cancers where its over-expression is proposed to be a significant mediator in chemo-resistance. We propose that inhibition of MKP-1 will increase the cytotoxic effect of doxorubicin in breast cancer cells, thus making the cells more responsive to treatment leading to increased cell death through autophagy and apoptosis. Methods: In MDA-MB231 cells, MKP-1 was inhibited using sanguinarine or MKP-1 siRNA and this was compared to a known inducer of MKP-1, dexamethasone. MDA-MB231 cells were treated with doxorubicin alone or in combination with MKP-1 inhibitors or an inducer. Following treatment, cell death was determined by trypan blue and a caspase glo assay as well as with western blotting. Autophagy was determined by western blotting and flow cytometry. LC3 and p62 were used as markers of autophagy and caspase 3 and PARP as apoptosis markers. Likewise, the level of MKP-1 expression under conditions of MKP-1 induction, inhibition or silencing was evaluated by means of western blotting. C57BL6 tumour bearing mice was used to analyse apoptosis and autophagy in vivo under conditions of MKP-1 inhibition, using sanguinarine, together with doxorubicin treatment. Western blotting was used to determine levels of caspase 3, LC3, p62 and MKP-1 expression. Results and discussion: A concentration and time curve indicated that 5 μM doxorubicin reduced cell viability in the MDA-MB231 cells significantly after 24 hours of treatment. MKP-1 expression was significantly reduced with sanguinarine and MKP-1 siRNA. Furthermore, our results indicate a significant increase in apoptosis in MDA-MB231 cells when treated with doxorubicin, under conditions of MKP-1 inhibition or MKP-1 silencing. Also, an increase in autophagic activity was observed following treatment with doxorubicin in combination with sanguinarine. Whole excised tumours of C57BL6 mice also showed an increase in apoptosis and autophagy following treatment with sanguinarine in combination with doxorubicin. This indicates that the inhibition of MKP-1 with sanguinarine sensitized the MDA-MB231 cells and E0771 cell tumours to doxorubicin-induced-apoptosis through a mechanism involving autophagy. Conclusion: This is an encouraging finding that could hopefully be used in future studies to overcome doxorubicin-resistance in breast cancer cells overexpressing MKP-1. Targeting MKP-1 can have potential therapeutic benefits for breast cancer patients by making chemotherapy more effective. Sanguinarine thus has potential to be developed as a clinically relevant inhibitor of MKP-1 which could provide a novel avenue for therapeutic intervention in combination with chemotherapy in breast cancer patients. / AFRIKAANSE OPSOMMING: Inleiding: Kanker is 'n vinnig groeiende gesondheidsprobleem in Suid-Afrika, met borskanker as een van die vernaamste kankers wat vroue wêreldwyd raak. Daar is dus 'n behoefte aan nuwe terapeutiese opsies vir hierdie pasiënte en mitogeen-geaktiveerde proteïenkinase fosfatase-1 (MKP-1) is onlangs voorgestel as ‘n moontlike teiken. Verskeie studies toon dat mitogeen-geaktiveerde proteïenkinase fosfatases betrokke is by die ontwikkeling van kanker en ook belangrike rolspelers is in die reaksie van kanker op chemoterapie. Daarbenewens toon talle studies dat daar verhoogde MKP-1 uitdrukking in borskanker is, asook dat dit ‘n belangrike bemiddelaar is vir die weerstand wat borskanker teen chemoterapie bied. Ons het dus voorgestel dat die inhibisie van MKP-1 die sitotoksiese effek van doxorubicin op borskanker selle sal verhoog; sodoende sal die kanker selle beter reageer op behandeling en dit sal dus lei tot verhoogde seldood deur autofagie en apoptose. Metodes: MKP-1 is geïnhibeer met behulp van sanguinarine of MKP-1 siRNA in MDA-MB231 selle en dit is vergelyk met 'n bekende MKP-1 induseerder, dexamethasone. MDA-MB231 selle is met doxorubicin alleen behandel of in kombinasie met MKP-1 inhibeerders of ‘n induseerder. Seldood is bepaal deur middel van ‘n trypan blou en kaspase toetsingsmetode, asook met die westelike kladtegniek. Autofagie is bepaal deur westelike kladtegniek en vloeisitometrie. LC3 en p62 is gebruik as merkers van autofagie en kaspase 3 en PARP is as apoptose merkers gebruik. MKP-1 uitdrukking is geëvalueer deur middel van westelike kladtegniek. C57BL6 muise met kankeragtige gewasse is gebruik om apoptose en autofagie in vivo te ondersoek. MKP-1 is geïnhibeer met sanguinarine en die muise is behandel met ‘n kombinasie van sanguinarine en doxorubicin. Kaspase 3, LC3, p62 en MKP-1 uitdrukking is bepaal deur middel van die westelike kladtegniek. Resultate en bespreking: ‘n Konsentrasie en tyd kurwe het aangedui dat 5 μM doxorubicin die MDA-MB231 selle se lewensvatbaarheid aansienlik verminder het na 24 uur. MKP-1 uitdrukking is ook aansienlik verminder met sanguinarine en MKP-1 siRNA. Verder dui die resultate op 'n beduidende toename in apoptose in MDA-MB231 selle na behandeling met doxorubicin onder toestande van MKP-1 inhibisie. 'n Toename in autofagiese aktiwiteit is waargeneem na behandeling met doxorubicin en sanguinarine. Die kankeragtige gewasse van die C57BL6 muise toon ook 'n toename in apoptose en autofagie na behandeling met sanguinarine en doxorubicin. Hierdie resultate dui daarop dat die inhibisie van MKP-1 met sanguinarine die MDA-MB231 selle en E0771 sel gewasse gesensitiseer het tot doxorubicin-geïnduseerde apoptose deur middel van ‘n meganisme wat autofagie insluit. Gevolgtrekking: Hierdie bevinding kan hopelik in toekomstige studies gebruik word om doxorubicin weerstand te oorkom in borskanker selle waar MKP-1 verhoog is. Deur MKP-1 te teiken, kan dit lei tot potensiële terapeutiese voordele vir borskanker pasiënte en sodoende kan dit chemoterapie meer effektief maak. Sanguinarine het dus die potensiaal om ontwikkel te word as ‘n klinies relevante inhibeerder van MKP-1 wat sodoende kan dien as terapeutiese intervensie in kombinasie met chemoterapie vir borskanker pasiënte.
24

Role of fibroblast growth factor signalling on the regulation of embryonic stem cells

Freile Vinuela, Paz January 2008 (has links)
Fibroblast growth factor (FGF) signalling plays many fundamentally important roles during the development of the mammalian embryo. However, its effects on pluripotent stem cells derived from mouse and human embryos appear to be markedly different. FGF2 is routinely added to culture medium for propagating undifferentiated human (hES) cells, whereas in mouse (mES) cell cultures FGFs have been described as regulators of their differentiated progeny. To assess the effect of FGF signalling on undifferentiated mES cells, the effects of FGF2 and 4 were analysed in the presence of saturating and sub-saturating levels of the inhibitor of differentiation, leukaemia inhibitory factor (LIF). Mouse ES cell self-renewal was quantified by measuring the expression of the stem cell specific reporter Oct4-LacZ in biochemical and fluorometric assays. Treatment with FGF reduced the expression of the OCT4-LacZ reporter, even under saturating concentrations of LIF and this was mirrored by decreased levels of OCT4 protein. Furthermore, treatment with FGF leads to upregulation of the ectodermal differentiation marker Pax6. These results suggest that FGF signalling has a direct impact on undifferentiated mES cells, and actively promotes their differentiation. To asses the effect of FGF signalling on hES cells without the influence of undefined factors, a feeder and serum free system was developed. Cells growing in this conditions for >20 passages maintained expression of surface (SSEA3 and TRA1-60 and 81) and internal (OCT4) markers specific for undifferentiated hES cells. Expression of these markers was dependant on the continuous presence of FGF2. Indeed, withdrawal of FGF2 resulted in a rapid decrease of in hES cell growth and of the emergence of cell flattened morphology and of the surface marker SSEA1, changes typically associated with differentiation. Two important signals activated by FGF in hES cells are the ERK/MAPK and PI3K pathways. To assess their functional relevance, hES cell cultures were treated with the drugs UO126 and LY294002, inhibitors of the MAPK and PI3K pathways respectively. Drug mediated suppression of the phosphorylation of these pathways, correlated with a reduction in cell growth, flattening of the colonies and reduction in SSEA4 expression. Use of SB431542, specific inhibitor of TGFβ/activin type I receptor kinase (Alk5) also resulted in the flattening of the colonies and the appearance of dispersed cells. Therefore, inhibition of MAPK and PI3K appears to impair growth and self-renewal in hES cells and this may be happening in conjunction with TGFβ/Activin pathway. Taken together, these results suggest that FGF signalling has opposite effects in mouse and human ES cells: inducing differentiation in mES and sustaining self-renewal in hES.
25

The Role of Podocyte Prostaglandin E2 and Angiotensin II Receptors in Glomerular Disease

Stitt, Erin Maureen 24 February 2011 (has links)
The incidence of chronic kidney disease (CKD) is increasing. CKD is characterized by a gradual decrease in renal function leading to end stage renal disease (ESRD). Damage to the glomerular podocytes, is one of the first hallmarks of CKD. We hypothesized that podocyte prostaglandin E2 (PGE2) receptors contribute to the progression of glomerular injury in models of CKD. To test this hypothesis, transgenic mice were generated with either podocyte-specific overexpression or deletion of the PGE2 EP4 receptor (EP4pod+and EP4pod-/- respectively). Mice were next tested in the 5/6 nephrectomy (5/6 Nx) or angiotensin II (Ang II) models of CKD. These studies revealed increased proteinuria and decreased survival for EP4pod+ mice while EP4pod-/- mice were protected against the development of glomerular injury. Furthermore, our findings were supported by in vitro studies using cultured mouse podocytes where an adhesion defect was uncovered for cells overexpressing the EP4 receptor. Additionally, our investigations have demonstrated a novel synergy between angiotensin II AT1 receptors and prostaglandin E2 EP4 receptors. This was revealed by in vitro studies using isolated mouse glomeruli. There we were able to show that Ang II stimulation leads to increased expression of cyclooxygenase 2 (COX-2), the enzyme responsible for synthesis of PGE2, in a p38 mitogen activated protein kinase (MAPK) dependent fashion. Moreover increased PGE2 synthesis was measured in response to Ang II stimulation. We confirmed the presence of this synergy in our cultured mouse podocytes and showed an adhesion defect in response to Ang II stimulation which was COX-2 and EP4 dependent. These findings suggest that Ang II AT1 receptors and PGE2 EP4 receptors act in concert to exacerbate glomerulopathies. Studies using mice with either podocyte-specific overexpression of a dominant negative p38 MAPK or mice with global deletion of the EP1 receptor did not provide conclusive results as to their respective signaling involvement in podocyte injury. Altogether our findings provide novel insight for podocyte PGE2 EP4 and Ang II AT1 receptor signaling in models of CKD. These studies provide novel avenues for pursuing therapeutic interventions for individuals with progressive kidney disease.
26

The Role of Podocyte Prostaglandin E2 and Angiotensin II Receptors in Glomerular Disease

Stitt, Erin Maureen 24 February 2011 (has links)
The incidence of chronic kidney disease (CKD) is increasing. CKD is characterized by a gradual decrease in renal function leading to end stage renal disease (ESRD). Damage to the glomerular podocytes, is one of the first hallmarks of CKD. We hypothesized that podocyte prostaglandin E2 (PGE2) receptors contribute to the progression of glomerular injury in models of CKD. To test this hypothesis, transgenic mice were generated with either podocyte-specific overexpression or deletion of the PGE2 EP4 receptor (EP4pod+and EP4pod-/- respectively). Mice were next tested in the 5/6 nephrectomy (5/6 Nx) or angiotensin II (Ang II) models of CKD. These studies revealed increased proteinuria and decreased survival for EP4pod+ mice while EP4pod-/- mice were protected against the development of glomerular injury. Furthermore, our findings were supported by in vitro studies using cultured mouse podocytes where an adhesion defect was uncovered for cells overexpressing the EP4 receptor. Additionally, our investigations have demonstrated a novel synergy between angiotensin II AT1 receptors and prostaglandin E2 EP4 receptors. This was revealed by in vitro studies using isolated mouse glomeruli. There we were able to show that Ang II stimulation leads to increased expression of cyclooxygenase 2 (COX-2), the enzyme responsible for synthesis of PGE2, in a p38 mitogen activated protein kinase (MAPK) dependent fashion. Moreover increased PGE2 synthesis was measured in response to Ang II stimulation. We confirmed the presence of this synergy in our cultured mouse podocytes and showed an adhesion defect in response to Ang II stimulation which was COX-2 and EP4 dependent. These findings suggest that Ang II AT1 receptors and PGE2 EP4 receptors act in concert to exacerbate glomerulopathies. Studies using mice with either podocyte-specific overexpression of a dominant negative p38 MAPK or mice with global deletion of the EP1 receptor did not provide conclusive results as to their respective signaling involvement in podocyte injury. Altogether our findings provide novel insight for podocyte PGE2 EP4 and Ang II AT1 receptor signaling in models of CKD. These studies provide novel avenues for pursuing therapeutic interventions for individuals with progressive kidney disease.
27

Study of ERK12 MAP kinases activation by the bradykinin type 2 receptor : characterization of beta-arrestin scaffolding function in the temporal regulation of ERK12 activation induced by the B2R

Houri, Nadia. January 2007 (has links)
G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors. The beta-arrestins, adaptor proteins involved in GPCR desensitization, may also act as scaffolds for signaling pathways such as the mitogen-activated protein kinase (MAPK) cascade. The MAPK family, which includes the extracellular-signal regulated kinases (ERK) 1 and 2, promotes cellular differentiation and proliferation. Herein, the activation of ERK1/2 upon stimulation of the GPCR bradykinin type 2 receptor (B2R) with bradykinin was examined. Various B2R mutants with modified C-termini were employed to examine the temporal kinetics of ERK1/2. One of these receptor mutants displayed a loss of beta-arrestin binding as well as greatly enhanced ERK1/2 activation, compared to the wild-type receptor, when a cluster of serine/threonine residues important for B2R internalization was mutated. The other receptor mutants exhibited a correlation between their affinity for beta-arrestin and the intensity of ERK1/2 activation. Data from a mouse embryonic fibroblast cell line null for beta-arrestin suggested that beta-arrestin is involved in late-phase ERK1/2 activation by the B2R. These data point to the involvement of beta-arrestin in the activation of the ERK1/2 MAPKs through the B2R.
28

The Role of Podocyte Prostaglandin E2 and Angiotensin II Receptors in Glomerular Disease

Stitt, Erin Maureen 24 February 2011 (has links)
The incidence of chronic kidney disease (CKD) is increasing. CKD is characterized by a gradual decrease in renal function leading to end stage renal disease (ESRD). Damage to the glomerular podocytes, is one of the first hallmarks of CKD. We hypothesized that podocyte prostaglandin E2 (PGE2) receptors contribute to the progression of glomerular injury in models of CKD. To test this hypothesis, transgenic mice were generated with either podocyte-specific overexpression or deletion of the PGE2 EP4 receptor (EP4pod+and EP4pod-/- respectively). Mice were next tested in the 5/6 nephrectomy (5/6 Nx) or angiotensin II (Ang II) models of CKD. These studies revealed increased proteinuria and decreased survival for EP4pod+ mice while EP4pod-/- mice were protected against the development of glomerular injury. Furthermore, our findings were supported by in vitro studies using cultured mouse podocytes where an adhesion defect was uncovered for cells overexpressing the EP4 receptor. Additionally, our investigations have demonstrated a novel synergy between angiotensin II AT1 receptors and prostaglandin E2 EP4 receptors. This was revealed by in vitro studies using isolated mouse glomeruli. There we were able to show that Ang II stimulation leads to increased expression of cyclooxygenase 2 (COX-2), the enzyme responsible for synthesis of PGE2, in a p38 mitogen activated protein kinase (MAPK) dependent fashion. Moreover increased PGE2 synthesis was measured in response to Ang II stimulation. We confirmed the presence of this synergy in our cultured mouse podocytes and showed an adhesion defect in response to Ang II stimulation which was COX-2 and EP4 dependent. These findings suggest that Ang II AT1 receptors and PGE2 EP4 receptors act in concert to exacerbate glomerulopathies. Studies using mice with either podocyte-specific overexpression of a dominant negative p38 MAPK or mice with global deletion of the EP1 receptor did not provide conclusive results as to their respective signaling involvement in podocyte injury. Altogether our findings provide novel insight for podocyte PGE2 EP4 and Ang II AT1 receptor signaling in models of CKD. These studies provide novel avenues for pursuing therapeutic interventions for individuals with progressive kidney disease.
29

Molecular mechanisms of CB1 cannabinoid receptor signaling and internalization /

Daigle, Tanya L. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 100-108).
30

Circadian oscillation of MAPK activity and cAMP in the hippocampus : implications for memory persistence /

Mahan, Kristin Lynn. January 2008 (has links)
Thesis (Ph. D.)--University of Washington, 2008. / Vita. Includes bibliographical references (leaves 110-127).

Page generated in 0.1106 seconds