• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of the JNK/AP-1 pathway in the induction of iNOS and CATs in vascular cells

Zamani, Marzieh January 2013 (has links)
Nitric oxide (NO) is an important biological molecule within the body, which over production of this molecule in response to different stimulations can cause various inflammatory diseases. Over production of this molecule is caused by the induction of the inducible nitric oxide synthase (iNOS) enzyme. This enzyme uses L-arginine as a substrate and therefore the presence and transport of this amino acid into the cells can be a key factor in regulating NO over production. Different signalling mechanisms have been implicated in the regulation of this pathway and one of which involves the Mitogen Activated Protein Kinases (MAPK). This family of proteins respond to inflammatory conditions and may mediate effects induced by inflammatory mediators. Of the MAPKs, the role of the c-Jun-N-terminal kinase (JNK) pathway in the induction of iNOS is still controversial. JNK and its downstream target, the transcription factor Activator Protein-1 (AP-1), have shown contradictory effects on iNOS induction leading to controversies over their role in regulating iNOS expression in different cell systems or with various stimuli. The studies described in this thesis have determined the role of JNK/AP-1 on iNOS expression, NO production, L-arginine uptake and also on the transporters responsible for L-arginine transport into the cells. The studies were carried out in two different cell types: rat aortic smooth muscle cells (RASMCs) and J774 macrophages which are both critically associated with the over production of NO in vascular inflammatory disease states. The first approach was to block the expression of the inducible L-arginine-NO pathway using SP600125 and JNK Inhibitor VIII which are both pharmacological inhibitors of JNK. The results from these studies showed that the pharmacological intervention was without effect in RASMCs, but inhibited iNOS, NO and L-arginine transport in J774 macrophages. In contrast, the molecular approach employed using two dominant negative constructs of AP-1 (TAM-67 and a-Fos) revealed a different profile of effects in RASMCs, where a-Fos caused an induction in iNOS and NO while TAM-67 had an inhibitory effect on iNOS, NO, L-arginine transport and CAT-2B mRNA expression. The latter was unaffected in RASMCs but suppressed in J774 macrophages by SP600125. Examination of JNK isoforms expression showed the presence of JNK1 and 2 in both cell systems. Moreover, stimulation with LPS/IFN- or LPS alone resulted in JNK phosphorylation which did not reveal any difference between smooth muscle cells and macrophages. In contrast, expression and activation of AP-1 subunits revealed differences between the two cell systems. Activation of cells with LPS and IFN- (RASMCs) or LPS alone (J774 macrophages) resulted in changes in the activated status of the different AP-1 subunit which was different for the two cell systems. In both cell types c-Jun, JunD and Fra-1 were increased and in macrophages, FosB activity was also enhanced. Inhibition of JNK with SP600125 caused down-regulation in c-Jun in both cell types. Interestingly this down-regulation was in parallel with increases in the subunits JunB, JunD, c-Fos and Fra-1 in RASMCs or JunB and Fra-1 in J774 macrophages. Since, SP600125 was able to exert inhibitory effects in the latter cell type but not in RASMCs, it is possible that the compensatory up-regulation of certain AP-1 subunits in the smooth muscle cells may compensate for c-Jun inhibition thereby preventing suppression of iNOS expression. This notion clearly needs to be confirmed but it is potentially likely that hetero-dimers formed between JunB, JunD, c-Fos and Fra-1 could sustain gene transcription in the absence of c-Jun. The precise dimer required has not been addressed but unlikely to exclusively involve JunB and Fra-1 as these are up-regulated in macrophages but did not sustain iNOS, NO or induced L-arginine transport in the presence of SP600125. To further support the argument above, the dominant negatives caused varied effects on the activation of the different subunits. a-Fos down-regulated c-Jun, c-Fos, FosB, Fra-1 whereas TAM-67 reduced c-Jun and c-Fos but marginally induced Fra-1 activity. Associated with these changes was an up-regulation of iNOS-NO by a-Fos and inhibition by TAM-67. Taken together, the data proposes a complex mechanism(s) that regulate the expression of the inducible L-arginine-NO pathway in different cell systems and the complexity may reflect diverse intracellular changes that may be different in each cell type and not always be apparent using one experimental approach especially where this is pharmacological. Moreover, these findings strongly suggest exercising caution when interpreting pure pharmacological findings in cell-based systems particularly where these are inconsistent or contradictory.
2

Die Regulation des humanen Lipopolysaccharid bindenden Proteins (hLBP)

Hallatschek, Werner 26 January 2005 (has links)
Das Lipopolysaccharid Bindende Protein (LBP) ist ein überwiegend in der Leber synthetisiertes Akutphaseprotein. Es bindet den Zellwandbestandteil Lipopolysaccharid (LPS) Gram-negativer Bakterien und transportiert es zu zellulären Rezeptoren, wodurch das angeborene Immunsystem aktiviert wird. In dieser Arbeit wird die Regulation der LBP-Expression in Interleukin (IL)-1, IL-6 und Dexamethason (Dex) stimulierten humanen Hepatomzelllinien HuH-7 und HepG2 untersucht. Der wichtigste Stimulator ist dabei IL-6, dessen Wirkung über die Transkriptionsfaktoren (TF) Stat-3, C/EBP-beta und AP-1 vermittelt wird. Für alle 3 TF konnten aktive Bindungsstellen auf dem LBP-Promotor nachgewiesen werden. Für IL-1-Effekte die u. a. über den TF NF-kappaB vermittelt werden, konnten ebenfalls aktive Bindungsstellen nachgewiesen werden. Die Wirkung von Dex wird über Glucocorticoid Responsive Elements (GREs) vermittelt. Auf dem LBP-Promotor befinden, sich wie gezeigt werden konnte, mehrere aktive GREs, wobei einige verstärkend und einige hemmend wirken. Eine zu beobachtende Synergiewirkung von Dex und IL-6 wird durch die Aufregulation des IL-6-Rezeptors durch Dex verursacht. Die LBP-Expression kann durch TGF (Transforming Growth Factor)-beta gehemmt werden. Der TGF-beta-Signalweg über Smads ist in den Hepatomzellen aktiv, vermittelt aber nicht den TGF-beta-Hemmeffekt, sondern eine geringe stimulierende Wirkung, die bei alleiniger TGF-beta-Inkubation auftritt. Die inhibierende Wirkung von TGF-beta wird durch Gfi-1- und AP-1-Bindungsstellen vermittelt. Die Gfi-1-Bindungsstelle nimmt dabei, wie hier erstmals gezeigt werden konnte, eine herausragende Stellung ein. Die Aufklärung der LBP-Regulation und dabei besonders die Hemmung der LBP-Expression kann mittelfristig dazu beitragen, den klinischen Verlauf von inflammatorischen und infektiösen Erkrankungen zu beeinflussen und bietet daher Potenzial für neue Therapieansätze. / Lipopolysaccharide (LPS) binding protein (LBP) is an acute phase protein with the ability to bind and transfer LPS of Gram-negative bacteria. This soluble pattern recognition molecule represents an important defense principle of the host. Regulation of the hepatic acute phase response and its termination are important mechanisms for limiting systemic inflammatory activity of the host. Here were analyze the cooperation of Interleukin (IL)-1, IL-6, and Dexamethasone (Dex) at LBP expression in the hepatoma cell lines HuH-7 and Hep G2. The major inducer of LBP expression is IL-6. Within the LBP promoter numerously highly consensus binding sites such as AP-1, C/EBP-beta? and STAT3 are present, that confer transcriptional activity as shown by truncation and mutation experiments. Additionally, activate NF-kappaB sites activated by IL-1 were detected at the LBP promoter. By mutation experiments of the promoter furthermore were found differentially active glucocorticoid response elements (GREs). The promoter contains GREs enhancing the activity as well as inhibitory ones. The enhancing effect towards LBP expression by Dex was mediated by IL-6. Dex stimulated the expression of the IL-6 receptor and therefore upregulated the IL-6 pathway. Transforming Growth Factor (TGF)-beta is able to inhibit LBP expression in stimulated cells. An AP-1 binding site was identified mediating inhibitory TGF-beta effects towards LBP promoter activity. Furthermore it was shown that a growth factor independence (Gfi)-1 binding site localized near the AP-1 site is essential for mediating the TGF-beta inhibitory effect. The relevancy of the Gfi-1 site fore mediating TGF-beta effects indicates a novel mechanism for understanding inhibitory TGF-beta effects at the transcriptional level. In summary the complex regulation of LBP were elucidate which may help to eventually develop novel intervention strategies for acute phase, sepsis, and septic shock.

Page generated in 0.0868 seconds