• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Key Geomechanical Aspects of Shallow and Deep Geothermal Energy

Caulk, Robert Alexander 01 January 2015 (has links)
Geothermal energy has become a focal point of the renewable energy revolution. Both shallow and deep types of geothermal energy have the potential to offset carbon emissions, reduce energy costs, and stimulate the economy. Before widespread geothermal exploration and exploitation can occur, both shallow and deep technologies require improvement by theoretical and experimental investigations. This thesis investigated one aspect of both shallow and deep geothermal energy technologies. First, a group of shallow geothermal energy piles was modeled numerically. The model was constructed, calibrated, and validated using available data collected from full-scale in-situ experimental energy piles. Following calibration, the model was parameterized to demonstrate the impact of construction specifications on energy pile performance and cross-sectional thermal stress distribution. The model confirmed the role of evenly spaced heat exchangers in optimal pile performance. Second, experimental methods were used to demonstrate the evolution of a fractured granite permeability as a function of mineral dissolution. Steady-state flow-through experiments were performed on artificially fractured granite cores constrained by 5 MPa pore pressure, 30 MPa confining pressure, and a 120°C temperature. Upstream pore pressures, effluent mineral concentrations, and X-Ray tomography confirmed the hypothesis that fracture asperities dissolve during the flow through experiment, resulting in fracture closure.
2

Thermo-Mechanical Behavior of Energy Piles: Full-Scale Field Testing and Numerical Modeling

Sutman, Melis 09 September 2016 (has links)
Energy piles are deep foundation elements designed to utilize near-surface geothermal energy, while at the same time serve as foundations for buildings. The use of energy piles for geothermal heat exchange has been steadily increasing during the last decade, yet there are still pending questions on their thermo-mechanical behavior. The change in temperature along energy piles, resulting from their employment in heat exchange operations, causes axial displacements, thermally induced axial stresses and changes in mobilized shaft resistance which may have possible effects on their behavior. In order to investigate these effects, an extensive field test program, including conventional pile load tests and application of heating-cooling cycles was conducted on three energy piles during a period of six weeks. Temperature changes were applied to the test piles with and without maintained mechanical loads to investigate the effects of structural loads on energy piles. Moreover, the lengths of the test piles were determined to represent different end-restraining conditions at the toe. Various sensors were installed to monitor the strain and temperature changes along the test piles. Axial stress and shaft resistance profiles inferred from the field test data along with the driven conclusions are presented herein for all three test piles. It is inferred from the field test results that changes in temperature results in thermally induced compressive or tensile axial stresses along energy piles, the magnitude of which increases with higher restrictions such as structural load on top or higher toe resistance. Moreover, lower change in shaft resistance is observed with increasing restrictions along the energy piles. In addition to the design, deployment, and execution of the field test, a thermo-mechanical cyclic numerical model was developed as a part of this research. In this numerical model, load-transfer approach was coupled with the Masing's Rule in order to simulate the two-way cyclic axial displacement of energy piles during temperature changes. The numerical model was validated using the field test results for cyclic thermal load and thermo-mechanical load applications. It is concluded that the use of load-transfer approach coupled with the Masing's Rule is capable of simulating the cyclic thermo-mechanical behavior of energy piles. / Ph. D.

Page generated in 0.0846 seconds