• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Active Reconfigurable Reflectarray Antenna

Kishor, Krishna 27 July 2010 (has links)
This thesis focuses on a type of antenna known as the reflectarray antenna. In particular, it looks at the design of an active reconfigurable reflectarray antenna, which has not received much attention in the reflectarray community. Potential applications include deployment as a high gain, reconfigurable antenna for communication links, and as a spatial power combiner. The reflectarray element is an aperture-coupled patch that accepts a linearly polarized wave, phase shifts and amplifies the guided-waves in the transmission lines, and then re-radiates an orthogonally polarized wave. Stability analysis of the element, experimental results of the designed phase shifter and simulation and experimental results of the element are presented. Fabrication details of a 48 element reflectarray and challenges faced during experimental characterization of the elements are also discussed. The two dimensional beamforming capability and amplifying nature of the array are successfully demonstrated and veri fied, indicating robustness to phase errors and oscillating elements.
2

An Active Reconfigurable Reflectarray Antenna

Kishor, Krishna 27 July 2010 (has links)
This thesis focuses on a type of antenna known as the reflectarray antenna. In particular, it looks at the design of an active reconfigurable reflectarray antenna, which has not received much attention in the reflectarray community. Potential applications include deployment as a high gain, reconfigurable antenna for communication links, and as a spatial power combiner. The reflectarray element is an aperture-coupled patch that accepts a linearly polarized wave, phase shifts and amplifies the guided-waves in the transmission lines, and then re-radiates an orthogonally polarized wave. Stability analysis of the element, experimental results of the designed phase shifter and simulation and experimental results of the element are presented. Fabrication details of a 48 element reflectarray and challenges faced during experimental characterization of the elements are also discussed. The two dimensional beamforming capability and amplifying nature of the array are successfully demonstrated and veri fied, indicating robustness to phase errors and oscillating elements.
3

The Design of The Active Integrated Antennas

Lin, Yan-ting 02 September 2010 (has links)
This study is focus on the integration and miniaturess of the active circuit and antennas. Recently, the monolithic microwave integrated circuits have been mature in communication markets and the associated handsets are interesting in the quality and profile. The antenna plays a role as a radiator in wireless system. Therefore, the performance dominates the quality of communication. The aspect of the antenna usually occupies the majority communication hardware¡¦s area. Comparing many front end circuit elements, the challenges in the antennas will be more crucial. Therefore, it has well merits in designing high integration and bandwidth antennas. Based on the integration of the active circuits stage and antennas, this work presents the aperture coupled active antenna with harmonic suppression and broadband dual feeds circularly polarized patch antenna. Utilizing the bented aperture and insertion of narrow rectangular slots on excitation edge for shifting the high order harmonic components from the active stage, the harmonic suppression characterization is implemented by the above approach. The other active antenna, braodband dual feeds circularly polarized antenna, is achieved with spatial power combining. The subject aims the different excitated patch structures and replacing the periodic feeding lines as active circuits in the discussion. Relative to the conventional 50 Ohm feeds, the mechanics of the feeds are modified with stepped impedance resonators and stubs at the same physical wave length condition for achieving the integration of the antenna and the circuit. Besides, this antenna can exhibit excellent behavior and compact the size in the effective frequency range.
4

Vital Sign Detection Using Active Antennas

Lin, Ming-Chun 08 August 2012 (has links)
Active integrated antennas (AIAs) are divided into oscillator type AIAs, amplifier type AIAs and frequency-conversion type AIAs. The AIAs designed in this master thesis are oscillator type. Instead of using lumped component like inductors and capacitors, I use a half-wavelength antenna as resonator. In this design, antenna is also treat as a radiated loading. According to reciprocity, antenna receives the reflection signal affected by human body movement and vital sign at the same time. This behavior is regarded as a self-injection locking oscillator. In this master thesis, active antenna is used in monitoring and contacting measurement. In monitoring measurement, active antenna and subject keep their distance. Subject random body movement affects the measured result. Contacting measurement means active antenna pastes on the subject, thus there is no relative displacement between active antenna and subject. Random body movement affect iscancelled in theory. In contacting measurement design some different body motions to test the tolerance of this measurement structure, and use correlation to cancel random body movement. The sensitivity of active antenna structure is enough to detect the vocal vibration in contacting measurement.
5

Design, Analysis and Implementation of Fully-Integrated Millimeter-Wave Coupled-Oscillator Antenna Array

Liu, Chuan-Chang 08 June 2016 (has links)
No description available.
6

Development of active integrated antennas and optimization for harmonic suppression antennas : simulation and measurement of active antennas for amplifiers and oscillators and numerical solution on design and optimization of active patch antennas for harmonic suppression with adaptive meshing using genetic algorithms

Zhou, Dawei January 2007 (has links)
The objectives of this research work are to investigate, design and implement active integrated antennas comprising active devices connected directly to the patch radiators, for various applications in high efficiency RF front-ends, integrated oscillator antennas, design and optimization of harmonic suppression antennas using a genetic algorithm (GA). A computer-aided design approach to obtain a class F operation to optimizing the optimal fundamental load impedance and designing the input matching circuits for an active integrated antenna of the transmitting type is proposed and a case study of a design for 1.6 GHz is used to confirm the design principle. A study of active integrated oscillator antennas with a series feed back using a pseudomorphic high electronmobility transistor (PHEMT) confirms the design procedure in simulation and measurement for the oscillator circuit connected directly to the active antenna. Subsequently, another design of active oscillator antenna using bipolar junction transistor (BJT) improves the phase noise of the oscillation and in addition to achieve amplitude shift keying (ASK) and amplitude modulation (AM) modulation using the proposed design circuit. Moreover, the possibility of using a sensor patch technique to find the power accepted by the antenna at harmonic frequencies is studied. A novel numerical solution, for designing and optimizing active patch antennas for harmonic suppression using GA in collaboration with numerical electromagnetic computation (NEC), is presented. A new FORTRAN program is developed and used for adaptively meshing any planar antenna structure in terms of wire grid surface structures. The program is subsequently implemented in harmonic suppression antenna design and optimization using GA. The simulation and measurement results for several surface structures show a good agreement.
7

Development of active integrated antennas and optimization for harmonic suppression antennas

Zhou, Dawei January 2007 (has links)
yes / The objectives of this research work are to investigate, design and implement active integrated antennas comprising active devices connected directly to the patch radiators, for various applications in high efficiency RF front-ends, integrated oscillator antennas, design and optimization of harmonic suppression antennas using a genetic algorithm (GA). A computer-aided design approach to obtain a class F operation to optimizing the optimal fundamental load impedance and designing the input matching circuits for an active integrated antenna of the transmitting type is proposed and a case study of a design for 1.6 GHz is used to confirm the design principle. A study of active integrated oscillator antennas with a series feed back using a pseudomorphic high electronmobility transistor (PHEMT) confirms the design procedure in simulation and measurement for the oscillator circuit connected directly to the active antenna. Subsequently, another design of active oscillator antenna using bipolar junction transistor (BJT) improves the phase noise of the oscillation and in addition to achieve amplitude shift keying (ASK) and amplitude modulation (AM) modulation using the proposed design circuit. Moreover, the possibility of using a sensor patch technique to find the power accepted by the antenna at harmonic frequencies is studied. A novel numerical solution, for designing and optimizing active patch antennas for harmonic suppression using GA in collaboration with numerical electromagnetic computation (NEC), is presented. A new FORTRAN program is developed and used for adaptively meshing any planar antenna structure in terms of wire grid surface structures. The program is subsequently implemented in harmonic suppression antenna design and optimization using GA. The simulation and measurement results for several surface structures show a good agreement.

Page generated in 0.1113 seconds