• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 342
  • 67
  • 61
  • 23
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • 5
  • 5
  • 3
  • 3
  • Tagged with
  • 669
  • 669
  • 347
  • 118
  • 92
  • 77
  • 75
  • 70
  • 63
  • 57
  • 51
  • 50
  • 48
  • 44
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Investigation of Control Approaches for a High Precision, Piezo-Actuated Rotational Stage

Ericson, Niklas January 2016 (has links)
The Equipment Controls and Electronics section (EN-STI-ECE) at CERN is developing a high precision piezo-actuated rotational stage for the UA9 crystal collimation project. This collaboration is investigating how tiny bent crystals can help to steer particle beams used in modern hadron colliders such as the Large Hadron Collider (LHC). Particles are deflected by following the crystal planar channels, "channeling" through the crystal. For high energy particles the angular acceptance for channeling is very low, demanding for a high angular precision mechanism, i.e. the rotational stage. Several control-related issues arising from the complexity and operational environment of the system make it difficult to design a controller that achieves the desired performance. This thesis investigates different control approaches that could be used to improve the tracking capability of the rotational stage. It shows that the IRC method could be used to efficiently control the rotational stage. Moreover it shows that a harmonic cancellation method could be used to increase the tracking accuracy by canceling known harmonic disturbances. The harmonic cancellation method (the RFDC) was implemented in this thesis and proposed as an add-on to the present control algorithm.
292

Development of a Closed-Loop Force Reduction Mechanism in a Gait Rehabilitation Device

Frankart, Jeffrey 29 November 2012 (has links)
Elliptical trainers are prescribed in rehabilitative exercise but difficult to implement in populations with significant functional gait deficits. Typical elliptical machines do not mimic normal gait and therefore require modifications for clinical rehabilitation. This research builds on previous modifications of an elliptical trainer designed to simulate level-surface walking. This design differed from a commercial version. It included articulated footplates and an electromechanically-driven virtual-cam to control footplate position. Ankle dorsiflexion elicited lower-extremity muscle spasticity which produced an unwanted gait variant during stroke patient testing. Spasticity is a hyperexcitable stretch reflex causing inefficient gait. This project’s purpose was to develop an autonomous cam-profile adjustment to optimize the device’s rehabilitation potential. Foot-to-footplate forces were measured in stroke patients and compared to normative data. Greater than normal forces were considered spastic. An embedded controller was designed to reduce footplate forces via real-time cam-profile attenuation. A simulated spastic dorsiflexion load successfully proved the algorithm’s efficacy.
293

Phase/amplitude estimation for tuning and monitoring

Gyongy, Istvan January 2008 (has links)
The benefits of good loop tuning in the process industries have long been recognized. Ensuring that controllers are kept well-configured despite changes in process dynamics can bring energy and material savings, improved product quality as well as reduced downtime. A number of loop tuning packages therefore exist that can, on demand, check the state of a loop and adjust the controller as necessary. These methods generally apply some form of upset to the process to identify the current plant dynamics, against which the controller can then be evaluated. A simple approach to the automatic tuning of PI controllers injects variable frequency sinewaves into the loop under normal plant operation. The method employs a phase-locked loop-based device called a phase-frequency/estimation and uses 'design-point' rules, where the aim is for the Nyquist locus of the loop to pass through a particular point on the complex plane. A number of advantages are offered by the scheme: it can carry out both 'one shot' tuning and continuous adaptation, the latter even with the test signal set to a lower amplitude than that of noise. A published article is included here that extends the approach to PID controllers, with simulations studies and real-life test showing the method to work consistently well for a for a wide range of typical process dynamics, the closed-loop having a response that compares well with that produced by standard tuning rules. The associated signal processing tools are tested by applying them to the transmitter of a Coriolis mass-flow meter. Schemes are devised for the tracking and control of the second mode of measurementtube oscillation alongside the so-called 'driven mode', at which the tubes are usually vibrated, leading to useful information being made available for measurement correction purposes. Once a loop has been tuned, it is important to assess it periodically and to detect any performance losses resulting from events such as changes in process or disturbance dynamics and equipment malfunction such as faulty sensors and actuators. Motivated by the effective behaviour of the controller tuners, a loop monitor developed here, also using probing sinewaves coupled with 'design-point' ideas. In this application, the effect on the process must be minimal, so the device must work with lower still SNRs. Thus it is practical to use a fixed-frequency probing signal, together with a different tool set for tracking it. An extensive mathematical framework is developed describing the statistical properties of the signal parameter estimates, and those of the indices derived from these estimates indicating the state of the loop. The result is specific practical guidelines for the application of the monitor (e.g. for the choices of test signal amplitude and test duration). Loop monitoring itself has traditionally been carried out by passive methods that calculate various performance indicators from routine operating data. Playing a central role amongst these metrics is the Harris Index (HI) and its variants, which compare the output variance to a 'minimum achievable' figure. A key advantage of the active monitor proposed here is that it is able not only to detect suboptimal control but also to suggest how the controller should be adjusted. Moreover, the monitor’s index provides a strong indication of changes in damping factor. Through simple adjustments to the algorithm (by raising the amplitude of the test signal or adding high frequency dither to the control signal), the method can be applied even in the presence of actuator non-linearity, allowing it to identify the cause of performance losses. This is confirmed by real-life trials on a non-linear flow rig.
294

Adaptive controller design for an autonomous twin-hulled surface vessel with uncertain displacement and drag

Unknown Date (has links)
The design and validation of a low-level backstepping controller for speed and heading that is adaptive in speed for a twin-hulled underactuated unmanned surface vessel is presented. Consideration is given to the autonomous launch and recovery of an underwater vehicle in the decision to pursue an adaptive control approach. Basic system identification is conducted and numerical simulation of the vessel is developed and validated. A speed and heading controller derived using the backstepping method and a model reference adaptive controller are developed and ultimately compared through experimental testing against a previously developed control law. Experimental tests show that the adaptive speed control law outperforms the non-adaptive alternatives by as much as 98% in some cases; however heading control is slightly sacrificed when using the adaptive speed approach. It is found that the adaptive control law is the best alternative when drag and mass properties of the vessel are time-varying and uncertain. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
295

Contribution to nonlinear adaptive control of low inertia underwater robots / Contribution à la commande adaptative non linéaire des robots sous-marins à faible inertie

Maalouf, Divine 22 November 2013 (has links)
L'utilisation des véhicules sous-marins (ROV, AUV, gliders) s'est considérablement accrue ces dernières décennies, aussi bien dans le domaine de l'offshore ou de l'océanographie, que pour des applications militaires. Dans cette thèse, nous abordons le problème particulier de la commande des véhicules sous-marins à faible inertie et fort rapport puissance/inertie. Ces derniers constituent des systèmes fortement non linéaires, dont la dynamique est susceptible de varier au cours du temps (charge embarquée, caractéristiques des propulseurs, variation de salinité...) et qui sont très sensibles aux perturbations environnementales (chocs, traction sur l'ombilical...). Afin d'assurer des performances de suivi de trajectoire satisfaisantes, il est nécessaire d'avoir recours à une commande adaptative qui compense les incertitudes ou les variations des paramètres du modèle dynamique, mais également qui rejette les perturbations, telles que les chocs. A cette fin, nous proposons dans ce manuscrit, l'étude théorique et la validation expérimentale de plusieurs lois de commande pour véhicules sous-marins. Nous analysons tout d'abord des approches classiques dans ce domaine (commande PID et commande par retour d'état non linéaire), puis nous les comparons avec deux autres architectures de commande. La première est la commande adaptative L1 non linéaire, introduite en 2010 notamment pour la commande des véhicules aériens, et implémentée pour la première fois sur un véhicule sous-marin. Le découplage entre adaptation et robustesse permet l'utilisation de très grands gains d'adaptation (et donc une convergence plus rapide des paramètres estimés, sans aucune connaissance a priori), sans pour autant dégrader la stabilité. La seconde méthode, que nous proposons et qui constitue l'apport principal de cette thèse, est une évolution de la commande L1, permettant d'en améliorer les performances lors du suivi d'une trajectoire variable. Nous présentons une analyse de stabilité de cette commande, ainsi que sa comparaison expérimentale avec les autres lois de commande (commande PID, commande adaptative par retour d'état non linéaire et commande adaptative L1 standard). Ces expérimentations ont été réalisées sur un mini-ROV et plusieurs scenarii ont été étudiés, permettant ainsi d'évaluer, pour chaque loi, sa robustesse et son aptitude à rejeter les perturbations. / Underwater vehicles have gained an increased interest in the last decades given the multiple tasks they can accomplish in various fields, ranging from scientific to industrial and military applications. In this thesis, we are particularly interested in the category of vehicles having a high power to weight ratio. Different challenges in autonomous control of such highly unstable systems arise from the inherent nonlinearities and the time varyingbehavior of their dynamics. These challenges can be increased by the low inertia of this class of vehicles combined with their powerful actuation. A self tuning controller is therefore required in order to avoid any performance degradation during a specific mission. The closed-loop system is expected to compensate for different kinds of disturbances or changes in the model parameters. To solve this problem, we propose in this work the design,analysis and experimental validation of different control schemes on an underwater vehicle. Classical methods are initially proposed, namely the PID controller and the nonlinear adaptive state feedback (NASF) one, followed by two more advanced schemes based on the recently developed L1 adaptive controller. This last method stands out among the other developed ones in its particular architecture where robustness and adaptation are decoupled. In this thesis, the original L1 adaptive controller has been designed and successfullyvalidated then an extended version of it is proposed in order to deal with the observed time lags occurring in presence of a varying reference trajectory. The stability of this latter controller is then analysed and real-time experimental results for different operating conditions are presented and discussed for each proposed controller, assessing their performance and robustness.
296

Intelligent Supervisory Switching Control of Unmanned Surface Vehicles

Unknown Date (has links)
novel approach to extend the decision-making capabilities of unmanned surface vehicles (USVs) is presented in this work. A multi-objective framework is described where separate controllers command different behaviors according to a desired trajectory. Three behaviors are examined – transiting, station-keeping and reversing. Given the desired trajectory, the vehicle is able to autonomously recognize which behavior best suits a portion of the trajectory. The USV uses a combination of a supervisory switching control structure and a reinforcement learning algorithm to create a hybrid deliberative and reactive approach to switch between controllers and actions. Reinforcement learning provides a deliberative method to create a controller switching policy, while supervisory switching control acts reactively to instantaneous changes in the environment. Each action is restricted to one controller. Due to the nonlinear effects in these behaviors, two underactuated backstepping controllers and a fully-actuated backstepping controller are proposed for each transiting, reversing and station-keeping behavior, respectively, restricted to three degrees of freedom. Field experiments are presented to validate this system on the water with a physical USV platform under Sea State 1 conditions. Main outcomes of this work are that the proposed system provides better performance than a comparable gain-scheduled nonlinear controller in terms of an Integral of Absolute Error metric. Additionally, the deliberative component allows the system to identify dynamically infeasible trajectories and properly accommodate them. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
297

Output Stability Analysis for Nonlinear Systems with Time Delays

Unknown Date (has links)
Systems with time delays have a broad range of applications not only in control systems but also in many other disciplines such as mathematical biology, financial economics, etc. The time delays cause more complex behaviours of the systems. It requires more sophisticated analysis due to the infinite dimensional structure of the space spaces. In this thesis we investigate stability properties associated with output functions of delay systems. Our primary target is the equivalent Lyapunov characterization of input-tooutput stability (ios). A main approach used in this work is the Lyapuno Krasovskii functional method. The Lyapunov characterization of the so called output-Lagrange stability is technically the backbone of this work, as it induces a Lyapunov description for all the other output stability properties, in particular for ios. In the study, we consider two types of output functions. The first type is defined in between Banach spaces, whereas the second type is defined between Euclidean spaces. The Lyapunov characterization for the first type of output maps provides equivalence between the stability properties and the existence of the Lyapunov-Krasovskii functionals. On the other hand, as a special case of the first type, the second type output renders flexible Lyapunov descriptions that are more efficient in applications. In the special case when the output variables represent the complete collection of the state variables, our Lyapunov work lead to Lyapunov characterizations of iss, complementing the current iss theory with some novel results. We also aim at understanding how output stability are affected by the initial data and the external signals. Since the output variables are in general not a full collection of the state variables, the overshoots and decay properties may be affected in different ways by the initial data of either the state variables or just only the output variables. Accordingly, there are different ways of defining notions on output stability, making them mathematically precisely. After presenting the definitions, we explore the connections of these notions. Understanding the relation among the notions is not only mathematically necessary, it also provides guidelines in system control and design. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
298

Wind Feedforward Control of a USV

Unknown Date (has links)
In this research, a wind feedforward (FF) controller has been developed to augment closed loop feedback controllers for the position and heading station keeping control of Unmanned Surface Vehicles (USVs). The performance of the controllers was experimentally tested using a 16 foot USV in an outdoor marine environment. The FF controller was combined with three nonlinear feedback controllers, a Proportional–Derivative (PD) controller, a Backstepping (BS) controller, and a Sliding mode (SM) controller, to improve the station-keeping performance of the USV. To address the problem of wind model uncertainties, adaptive wind feedforward (AFF) control schemes are also applied to the FF controller, and implemented together with the BS and SM feedback controllers. The adaptive law is derived using Lyapunov Theory to ensure stability. On-water station keeping tests of each combination of FF and feedback controllers were conducted in the U.S. Intracoastal Waterway in Dania Beach, FL USA. Five runs of each test condition were performed; each run lasted at least 10 minutes. The experiments were conducted in Sea State 1 with an average wind speed of between 1 to 4 meters per second and significant wave heights of less than 0.2 meters. When the performance of the controllers is compared using the Integral of the Absolute Error (IAE) of position criterion, the experimental results indicate that the BS and SM feedback controllers significantly outperform the PD feedback controller (e.g. a 33% and a 44% decreases in the IAE, respectively). It is also found that FF is beneficial for all three feedback controllers and that AFF can further improve the station keeping performance. For example, a BS feedback control combined with AFF control reduces the IAE by 25% when compared with a BS feedback controller combined with a non-adaptive FF controller. Among the eight combinations of controllers tested, SM feedback control combined with AFF control gives the best station keeping performance with an average position and heading error of 0.32 meters and 4.76 degrees, respectively. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
299

Split algorithms for LMS adaptive systems.

January 1991 (has links)
by Ho King Choi. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1991. / Includes bibliographical references. / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Adaptive Filter and Adaptive System --- p.1 / Chapter 1.2 --- Applications of Adaptive Filter --- p.4 / Chapter 1.2.1 --- System Identification --- p.4 / Chapter 1.2.2 --- Noise Cancellation --- p.6 / Chapter 1.2.3 --- Echo Cancellation --- p.8 / Chapter 1.2.4 --- Speech Processing --- p.10 / Chapter 1.3 --- Chapter Summary --- p.14 / References --- p.15 / Chapter 2. --- Adaptive Filter Structures and Algorithms --- p.17 / Chapter 2.1 --- Filter Structures for Adaptive Filtering --- p.17 / Chapter 2.2 --- Adaptation Algorithms --- p.22 / Chapter 2.2.1 --- The LMS Adaptation Algorithm --- p.24 / Chapter 2.2.1.1 --- Convergence Analysis --- p.28 / Chapter 2.2.1.2 --- Steady State Performance --- p.33 / Chapter 2.2.2 --- The RLS Adaptation Algorithm --- p.35 / Chapter 2.3 --- Chapter Summary --- p.39 / References --- p.41 / Chapter 3. --- Parallel Split Adaptive System --- p.45 / Chapter 3.1 --- Parallel Form Adaptive Filter --- p.45 / Chapter 3.2 --- Joint Process Estimation with a Split-Path Adaptive Filter --- p.49 / Chapter 3.2.1 --- The New Adaptive System Identification Configuration --- p.53 / Chapter 3.2.2 --- Analysis of the Split-Path System Modeling Structure --- p.57 / Chapter 3.2.3 --- Comparison with the Non-Split Configuration --- p.63 / Chapter 3.2.4 --- Some Notes on Even Filter Order Case --- p.67 / Chapter 3.2.5 --- Simulation Results --- p.70 / Chapter 3.3 --- Autoregressive Modeling with a Split-Path Adaptive Filter --- p.75 / Chapter 3.3.1 --- The Split-Path Adaptive Filter for AR Modeling --- p.79 / Chapter 3.3.2 --- Analysis of the Split-Path AR Modeling Structure --- p.84 / Chapter 3.3.3 --- Comparison with Traditional AR Modeling System --- p.89 / Chapter 3.3.4 --- Selection of Step Sizes --- p.90 / Chapter 3.3.5 --- Some Notes on Odd Filter Order Case --- p.94 / Chapter 3.3.6 --- Simulation Results --- p.94 / Chapter 3.3.7 --- Application to Noise Cancellation --- p.99 / Chapter 3.4 --- Chapter Summary --- p.107 / References --- p.109 / Chapter 4. --- Serial Split Adaptive System --- p.112 / Chapter 4.1 --- Serial Form Adaptive Filter --- p.112 / Chapter 4.2 --- Time Delay Estimation with a Serial Split Adaptive Filter --- p.125 / Chapter 4.2.1 --- Adaptive TDE --- p.125 / Chapter 4.2.2 --- Split Filter Approach to Adaptive TDE --- p.132 / Chapter 4.2.3 --- Analysis of the New TDE System --- p.136 / Chapter 4.2.3.1 --- Least-mean-square Solution --- p.138 / Chapter 4.2.3.2 --- Adaptation Algorithm and Performance Evaluation --- p.142 / Chapter 4.2.4 --- Comparison with Traditional Adaptive TDE Method --- p.147 / Chapter 4.2.5 --- System Implementation --- p.148 / Chapter 4.2.6 --- Simulation Results --- p.148 / Chapter 4.2.7 --- Constrained Adaptation for the New TDE System --- p.156 / Chapter 4.3 --- Chapter Summary --- p.163 / References --- p.165 / Chapter 5. --- Extension of the Split Adaptive Systems --- p.167 / Chapter 5.1 --- The Generalized Parallel Split System --- p.167 / Chapter 5.2 --- The Generalized Serial Split System --- p.170 / Chapter 5.3 --- Comparison between the Parallel and the Serial Split Adaptive System --- p.172 / Chapter 5.4 --- Integration of the Two Forms of Split Predictors --- p.177 / Chapter 5.5 --- Application of the Integrated Split Model to Speech Encoding --- p.179 / Chapter 5.6 --- Chapter Summary --- p.188 / References --- p.139 / Chapter 6. --- Conclusions --- p.191 / References --- p.197
300

Controle não linear adaptativo com compensação de atriti de um manipulador scara com acionamento pneumático

Schlüter, Melissa dos Santos January 2018 (has links)
Sistemas pneumáticos se tornaram cada vez mais presentes em vários segmentos do mercado e são amplamente utilizados na indústria, principalmente devido à sua facilidade de manutenção, baixo custo, segurança e aplicabilidade em diversos processos. O desenvolvimento contínuo da tecnologia conduziu a um aumento nas pesquisas relacionadas ao controle de sistemas de servoposicionamento pneumático, resultando em algoritmos que têm avançado na direção da disponibilização de controle mais preciso destes sistemas. O presente trabalho se propõe ao desenvolvimento de um manipulador tipo SCARA composto por dois atuadores rotativos e um prismático, todos pneumáticos. Estes dispositivos apresentam grandes não linearidades, que dificultam seu controle. Assim, visa-se no presente trabalho o desenvolvimento de um controlador baseado em um modelo que possa superar as principais dificuldades relacionadas a essas não linearidades, como o comportamento não linear da relação pressão-vazão na servoválvula, a dinâmica dos gases na aleta e as forças de atrito O principal objetivo dessa tese é propor uma estratégia de controle baseada na Lei do Torque Computado Adaptativo com compensação explícita do atrito que contemple as peculiaridades dinâmicas estruturais deste tipo de sistema com aplicação de controle de trajetória. O modelo matemático para o atuador pneumático rotativo proposto no âmbito do presente trabalho e utilizado na síntese desse controlador foi avaliado por meio de resultados de simulações e experimentos executados em um protótipo projetado e construído também no escopo do presente trabalho. Os resultados da aplicação do controlador proposto, operando em regime de seguimento de trajetórias contínuas indicam que a estratégia de controle do Torque Computado Adaptativo, em conjunto com o esquema de compensação explícita do atrito, leva o sistema a uma redução dos erros de seguimento de trajetória em posição quando comparado com as técnicas do Torque Computado com parâmetros fixos, Torque Computado com parâmetros fixos com compensação explícita do atrito e Torque Computado Adaptativo sem a compensação explícita do atrito. / Pneumatic systems become increasingly present in different segments of the market and are widely used in industry, mainly due to their ease of maintenance, low cost, safety and applicability in various processes. The continued development of technology resulted in an increase in the research related to the control of pneumatic servo drive positioning systems, resulting in algorithms that have advanced in the direction of the availability of more precise control of these systems. This study has the purpose of to develop a type pneumatic driven SCARA manipulator that consists of a prismatic and two rotary actuators. These devices present highly nonlinear, which harder their control. Thus, the target of this work is to develop a controller based on a model that can overcome the main difficulties related to these nonlinearities, such as the nonlinear behavior of the pressure-flow ratio in the servo valve, the gas dynamics in the fin and friction. The main objective of this thesis is to propose a control strategy based on the Adaptive Computed Torque Law with explicit compensation of the friction that contemplates the structural dynamic peculiarities of this type of system with application of trajectory control The mathematical model for the rotary pneumatic actuator proposed in the present work and used in the synthesis of this controller was evaluated through simulations results and experiments executed in a prototype designed and also built in the scope of the present work. The results of the application of the proposed controller, operating in continuous trajectories tracking regime, indicate that the Adaptive Computed Torque control strategy, together with the explicit friction compensation scheme, leads the system to a reduction of the following errors trajectory in position when compared to techniques as Computed Torque with fixed parameters, Torque Computed with explicit friction compensation and Computed Torque Adaptive without explicit friction compensation.

Page generated in 0.0711 seconds