• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 30
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 105
  • 105
  • 29
  • 29
  • 29
  • 24
  • 19
  • 17
  • 16
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Real-time Structural Health Monitoring of Nonlinear Hysteretic Structures

Nayyerloo, Mostafa January 2011 (has links)
The great social and economic impact of earthquakes has made necessary the development of novel structural health monitoring (SHM) solutions for increasing the level of structural safety and assessment. SHM is the process of comparing the current state of a structure’s condition relative to a healthy baseline state to detect the existence, location, and degree of likely damage during or after a damaging input, such as an earthquake. Many SHM algorithms have been proposed in the literature. However, a large majority of these algorithms cannot be implemented in real time. Therefore, their results would not be available during or immediately after a major event for urgent post-event response and decision making. Further, these off-line techniques are not capable of providing the input information required for structural control systems for damage mitigation. The small number of real-time SHM (RT-SHM) methods proposed in the past, resolve these issues. However, these approaches have significant computational complexity and typically do not manage nonlinear cases directly associated with relevant damage metrics. Finally, many available SHM methods require full structural response measurement, including velocities and displacements, which are typically difficult to measure. All these issues make implementation of many existing SHM algorithms very difficult if not impossible. This thesis proposes simpler, more suitable algorithms utilising a nonlinear Bouc-Wen hysteretic baseline model for RT-SHM of a large class of nonlinear hysteretic structures. The RT-SHM algorithms are devised so that they can accommodate different levels of the availability of design data or measured structural responses, and therefore, are applicable to both existing and new structures. The second focus of the thesis is on developing a high-speed, high-resolution, seismic structural displacement measurement sensor to enable these methods and many other SHM approaches by using line-scan cameras as a low-cost and powerful means of measuring structural displacements at high sampling rates and high resolution. Overall, the results presented are thus significant steps towards developing smart, damage-free structures and providing more reliable information for post-event decision making.
82

Séparation de signaux en mélanges convolutifs : contributions à la séparation aveugle de sources parcimonieuses et à la soustraction adaptative des réflexions multiples en sismique / Signal separation in convolutive mixtures : contributions to blind separation of sparse sources and adaptive subtraction of seismic multiples

Batany, Yves-Marie 14 November 2016 (has links)
La séparation de signaux corrélés à partir de leurs combinaisons linéaires est une tâche difficile et possède plusieurs applications en traitement du signal. Nous étudions deux problèmes, à savoir la séparation aveugle de sources parcimonieuses et le filtrage adaptatif des réflexions multiples en acquisition sismique. Un intérêt particulier est porté sur les mélanges convolutifs : pour ces deux problèmes, des filtres à réponses impulsionnelles finies peuvent être estimés afin de récupérer les signaux désirés.Pour les modèles de mélange instantanés et convolutifs, nous donnons les conditions nécessaires et suffisantes pour l'extraction et la séparation exactes de sources parcimonieuses en utilisant la pseudo-norme L0 comme une fonction de contraste. Des équivalences entre l'analyse en composantes parcimonieuses et l'analyse en composantes disjointes sont examinées.Pour la soustraction adaptative des réflexions sismiques, nous discutons les limites des méthodes basées sur l'analyse en composantes indépendantes et nous soulignons l'équivalence avec les méthodes basées sur les normes Lp. Nous examinons de quelle manière les paramètres de régularisation peuvent être plus décisifs pour l'estimation des primaires. Enfin, nous proposons une amélioration de la robustesse de la soustraction adaptative en estimant les filtres adaptatifs directement dans le domaine des curvelets. Les coûts en calcul et en mémoire peuvent être atténués par l'utilisation de la transformée en curvelet discrète et uniforme. / The recovery of correlated signals from their linear combinations is a challenging task and has many applications in signal processing. We focus on two problems that are the blind separation of sparse sources and the adaptive subtraction of multiple events in seismic processing. A special focus is put on convolutive mixtures: for both problems, finite impulse response filters can indeed be estimated for the recovery of the desired signals.For instantaneous and convolutive mixing models, we address the necessary and sufficient conditions for the exact extraction and separation of sparse sources by using the L0 pseudo-norm as a contrast function. Equivalences between sparse component analysis and disjoint component analysis are investigated.For adaptive multiple subtraction, we discuss the limits of methods based on independent component analysis and we highlight equivalence with Lp-norm-based methods. We investigate how other regularization parameters may have more influence on the estimation of the desired primaries. Finally, we propose to improve the robustness of adaptive subtraction by estimating the extracting convolutive filters directly in the curvelet domain. Computation and memory costs are limited by using the uniform discrete curvelet transform.
83

Restauração cega de imagens: soluções baseadas em algoritmos adaptativos. / Blind image restoration: solutions based on adaptive algorithms.

Silva, Daniela Brasil 24 May 2018 (has links)
O objetivo da desconvolução cega de imagens é restaurar uma imagem degradada sem usar informação da imagem real ou da função de degradação. O mapeamento dos níveis de cinza de uma imagem em um sinal de comunicação possibilita o uso de técnicas de equalização cega de canais para a restauração de imagens. Neste trabalho, propõe-se o uso de um esquema para desconvolução cega de imagens baseado na combinação convexa de um equalizador cego com um equalizador no modo de decisão direta. A combinação também é adaptada de forma cega, o que possibilita o chaveamento automático entre os filtros componentes. Dessa forma, o esquema proposto é capaz de atingir o desempenho de um algoritmo de filtragem adaptativa supervisionada sem o conhecimento prévio da imagem original. O desempenho da combinação é ilustrado por meio de simulações, que comprovam a eficiência desse esquema quando comparado a outras soluções da literatura. / The goal of blind image deconvolution is to restore a degraded image without using information from the actual image or from the point spread function. The mapping of the gray levels of an image into a communication signal enables the use of blind equalization techniques for image restoration. In this work, we use a blind image deconvolution scheme based on the convex combination of a blind equalizer with an equalizer in the decision-directed mode. The combination is also blindly adapted, which enables automatic switching between the component filters. Thus, the proposed scheme is able to achieve the performance of a supervised adaptive filtering algorithm without prior knowledge of the original image. The performance of the combination is illustrated by simulations, which show the efficiency of this scheme when compared to other solutions in the literature.
84

Uma nova metodologia para análise da qualidade da energia elétrica sob condições de ocorrência de múltiplos distúrbios / A new methodology for power quality analysis under multiple disturbance occurrence

Lima, Marcelo Antonio Alves 14 October 2013 (has links)
Um Sistema Elétrico de Potência (SEP) está susceptível à presença de diversas fontes de distúrbios que prejudicam a Qualidade da Energia Elétrica (QEE). Desta forma, as suas tensões e/ou correntes podem conter m´múltiplos distúrbios com ocorrência simultânea. Este trabalho apresenta uma metodologia para decomposição do sinal medido em componentes que estimem as formas de onda dos distúrbios individuais quando da ocorrência de m´múltiplos distúrbios, com o posterior reconhecimento de cada um deles. A Análise de Componentes Independentes (ICA) é utilizada como principal ferramenta na etapa de decomposição dos distúrbios. A ICA é originalmente uma t´técnica aplicada em análise multivariada de dados, o que significa que ela necessita de medições realizadas por múltiplos sensores dispostos em diferentes posições de um sistema. No entanto, este trabalho propõe a sua aplicação tendo disponível apenas um sinal medido. Para tanto, são propostos dois métodos para produzir a diversidade necessária para a t´técnica funcionar adequadamente. É demonstrado que ambos os métodos equivalem a um banco de filtros lineares adaptativos capaz de realizar a separação não-supervisionada de múltiplos distúrbios independentes e que sejam espectralmente disjuntos. Por fim, é proposto um sistema de classificação que utiliza Redes Neurais Artificiais (RNAs) para identificar os distúrbios decompostos pela etapa anterior. A metodologia completa é avaliada por meio de testes utilizando dados sintéticos e reais, alcançando resultados altamente satisfatórios para decomposição de sinais contendo múltiplos distúrbios e taxas de acerto globais dos classificadores superiores a 97% / The power system is susceptible to the presence of several sources of disturbances that harm the power quality. In this sense, its voltages and/or currents may contain multiple disturbances with simultaneous occurrence. This work presents a methodology that decomposes the measured signal in components which estimate the waveforms of the individual disturbances followed by their recognition when a multiple disturbance situation occurs. The Independent Component Analysis (ICA) is the main tool in the disturbance decomposition stage. The ICA is originally a technique applied in multivariate data analysis, which means that it requires measurements from multiple sensors allocated in different positions of the system. However, this work proposes its application for a single measured signal available. For this, two methods were developed in order to provide the required diversity to the ICA technique. It is demonstrated that both methods are equivalent to an adaptive linear filter bank capable to perform an unsupervised separation of multiple independent disturbances, if they are spectrally disjoint. A classification system based on artificial neural networks is proposed to identify the disturbances decomposed by the previous stage. The complete system is tested using synthetic and actual data, presenting highly satisfactory results for the decomposition of signals containing multiple disturbances, and precision for the classification task above 97%
85

Uma nova metodologia para análise da qualidade da energia elétrica sob condições de ocorrência de múltiplos distúrbios / A new methodology for power quality analysis under multiple disturbance occurrence

Marcelo Antonio Alves Lima 14 October 2013 (has links)
Um Sistema Elétrico de Potência (SEP) está susceptível à presença de diversas fontes de distúrbios que prejudicam a Qualidade da Energia Elétrica (QEE). Desta forma, as suas tensões e/ou correntes podem conter m´múltiplos distúrbios com ocorrência simultânea. Este trabalho apresenta uma metodologia para decomposição do sinal medido em componentes que estimem as formas de onda dos distúrbios individuais quando da ocorrência de m´múltiplos distúrbios, com o posterior reconhecimento de cada um deles. A Análise de Componentes Independentes (ICA) é utilizada como principal ferramenta na etapa de decomposição dos distúrbios. A ICA é originalmente uma t´técnica aplicada em análise multivariada de dados, o que significa que ela necessita de medições realizadas por múltiplos sensores dispostos em diferentes posições de um sistema. No entanto, este trabalho propõe a sua aplicação tendo disponível apenas um sinal medido. Para tanto, são propostos dois métodos para produzir a diversidade necessária para a t´técnica funcionar adequadamente. É demonstrado que ambos os métodos equivalem a um banco de filtros lineares adaptativos capaz de realizar a separação não-supervisionada de múltiplos distúrbios independentes e que sejam espectralmente disjuntos. Por fim, é proposto um sistema de classificação que utiliza Redes Neurais Artificiais (RNAs) para identificar os distúrbios decompostos pela etapa anterior. A metodologia completa é avaliada por meio de testes utilizando dados sintéticos e reais, alcançando resultados altamente satisfatórios para decomposição de sinais contendo múltiplos distúrbios e taxas de acerto globais dos classificadores superiores a 97% / The power system is susceptible to the presence of several sources of disturbances that harm the power quality. In this sense, its voltages and/or currents may contain multiple disturbances with simultaneous occurrence. This work presents a methodology that decomposes the measured signal in components which estimate the waveforms of the individual disturbances followed by their recognition when a multiple disturbance situation occurs. The Independent Component Analysis (ICA) is the main tool in the disturbance decomposition stage. The ICA is originally a technique applied in multivariate data analysis, which means that it requires measurements from multiple sensors allocated in different positions of the system. However, this work proposes its application for a single measured signal available. For this, two methods were developed in order to provide the required diversity to the ICA technique. It is demonstrated that both methods are equivalent to an adaptive linear filter bank capable to perform an unsupervised separation of multiple independent disturbances, if they are spectrally disjoint. A classification system based on artificial neural networks is proposed to identify the disturbances decomposed by the previous stage. The complete system is tested using synthetic and actual data, presenting highly satisfactory results for the decomposition of signals containing multiple disturbances, and precision for the classification task above 97%
86

Algoritmos eficientes para equalização autodidata de sinais QAM. / Efficient algorithms for blind equalization of QAM signals.

João Mendes Filho 30 November 2011 (has links)
Neste trabalho, são propostos e analisados algoritmos autodidatas eficientes para a equalização de canais de comunicação, considerando a transmissão de sinais QAM (quadrature amplitude modulation). Suas funções de erro são construídas de forma a fazer com que o erro de estimação seja igual a zero nas coordenadas dos símbolos da constelação. Essa característica os possibilita ter um desempenho similar ao de um algoritmo de equalização supervisionada como o NLMS (normalized least mean-square), independentemente da ordem da constelação QAM. Verifica-se analiticamente que, sob certas condições favoráveis para a equalização, os vetores de coeficientes dos algoritmos propostos e a correspondente solução de Wiener são colineares. Além disso, usando a informação da estimativa do símbolo transmitido e de seus símbolos vizinhos, esquemas de baixo custo computacional são propostos para aumentar a velocidade de convergência dos algoritmos. No caso do algoritmo baseado no critério do módulo constante, evita-se sua divergência através de um mecanismo que descarta estimativas inconsistentes dos símbolos transmitidos. Adicionalmente, apresenta-se uma análise de rastreio (tracking), que permite obter expressões analíticas para o erro quadrático médio em excesso dos algoritmos propostos em ambientes estacionários e não-estacionários. Através dessas expressões, verifica-se que com sobreamostragem, ausência de ruído e ambiente estacionário, os algoritmos propostos podem alcançar a equalização perfeita, independentemente da ordem da constelação QAM. Os algoritmos são estendidos para a adaptação conjunta dos filtros direto e de realimentação do equalizador de decisão realimentada, levando-se em conta um mecanismo que evita soluções degeneradas. Resultados de simulação sugerem que a utilização dos esquemas aqui propostos pode ser vantajosa na recuperação de sinais QAM, fazendo com que seja desnecessário o chaveamento para o algoritmo de decisão direta. / In this work, we propose efficient blind algorithms for equalization of communication channels, considering the transmission of QAM (quadrature amplitude modulation) signals. Their error functions are constructed in order to make the estimation error equal to zero at the coordinates of the constellation symbols. This characteristic enables the proposed algorithms to have a similar performance to that of a supervised equalization algorithm as the NLMS (normalized least mean-square), independently of the QAM order. Under some favorable conditions, we verify analytically that the coefficient vector of the proposed algorithms are collinear with the Wiener solution. Furthermore, using the information of the symbol estimate in conjunction with its neighborhood, we propose schemes of low computational cost in order to improve their convergence rate. The divergence of the constant-modulus based algorithm is avoided by using a mechanism, which disregards nonconsistent estimates of the transmitted symbols. Additionally, we present a tracking analysis in which we obtain analytical expressions for the excess mean-square error in stationary and nonstationary environments. From these expressions, we verify that using a fractionally-spaced equalizer in a noiseless stationary environment, the proposed algorithms can achieve perfect equalization, independently of the QAM order. The algorithms are extended to jointly adapt the feedforward and feedback filters of the decision feedback equalizer, taking into account a mechanism to avoid degenerative solutions. Simulation results suggest that the proposed schemes may be advantageously used to recover QAM signals and make the switching to the decision direct mode unnecessary.
87

Restauração cega de imagens: soluções baseadas em algoritmos adaptativos. / Blind image restoration: solutions based on adaptive algorithms.

Daniela Brasil Silva 24 May 2018 (has links)
O objetivo da desconvolução cega de imagens é restaurar uma imagem degradada sem usar informação da imagem real ou da função de degradação. O mapeamento dos níveis de cinza de uma imagem em um sinal de comunicação possibilita o uso de técnicas de equalização cega de canais para a restauração de imagens. Neste trabalho, propõe-se o uso de um esquema para desconvolução cega de imagens baseado na combinação convexa de um equalizador cego com um equalizador no modo de decisão direta. A combinação também é adaptada de forma cega, o que possibilita o chaveamento automático entre os filtros componentes. Dessa forma, o esquema proposto é capaz de atingir o desempenho de um algoritmo de filtragem adaptativa supervisionada sem o conhecimento prévio da imagem original. O desempenho da combinação é ilustrado por meio de simulações, que comprovam a eficiência desse esquema quando comparado a outras soluções da literatura. / The goal of blind image deconvolution is to restore a degraded image without using information from the actual image or from the point spread function. The mapping of the gray levels of an image into a communication signal enables the use of blind equalization techniques for image restoration. In this work, we use a blind image deconvolution scheme based on the convex combination of a blind equalizer with an equalizer in the decision-directed mode. The combination is also blindly adapted, which enables automatic switching between the component filters. Thus, the proposed scheme is able to achieve the performance of a supervised adaptive filtering algorithm without prior knowledge of the original image. The performance of the combination is illustrated by simulations, which show the efficiency of this scheme when compared to other solutions in the literature.
88

Algoritmos adaptativos LMS normalizados proporcionais: proposta de novos algoritmos para identificação de plantas esparsas / Proportional normalized LMS adaptive algorithms: proposed new algorithms for identification of sparse plants

Castelo Branco, César Augusto Santana 12 December 2016 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-06-23T20:42:44Z No. of bitstreams: 1 CesarCasteloBranco.pdf: 11257769 bytes, checksum: 911c33f2f0ba5c1c0948888e713724f6 (MD5) / Made available in DSpace on 2017-06-23T20:42:44Z (GMT). No. of bitstreams: 1 CesarCasteloBranco.pdf: 11257769 bytes, checksum: 911c33f2f0ba5c1c0948888e713724f6 (MD5) Previous issue date: 2016-12-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) / This work proposes new methodologies to optimize the choice of the parameters of the proportionate normalized least-mean-square (PNLMS) adaptive algorithms. The proposed approaches use procedures based on two optimization methods, namely, the golden section and tabu search methods. Such procedures are applied to determine the optimal parameters in each iteration of the adaptation process of the PNLMS and improved PNLMS (IPNLMS) algorithms. The objective function for the proposed procedures is based on the a posteriori estimation error. Performance studies carried out to evaluate the impact of the PNLMS and IPNLMS parameters in the behavior of these algorithms shows that, with the aid of optimization techniques to choose properly such parameters, the performance of these algorithms may be improved in terms of convergence speed for the identification of plants with high sparseness degree. The main goal of the proposed methodologies is to improve the distribution of the adaptation energy between the coefficients of the PNLMS and IPNLMS algorithms, using parameter values that lead to the minimal estimation error of each iteration of the adaptation process. Numerical tests performed (considering various scenarios in which the plant impulse response is sparse) show that the proposed methodologies achieve convergence speeds faster than the PNLMS and IPNLMS algorithms, and other algorithms of the PNLMS class, such as the sparseness controlled IPNLMS (SC-IPNLMS) algorithm. / Neste trabalho, novas metodologias para otimizar a escolha dos parâmetros dos algoritmos adaptativos LMS normalizados proporcionais (PNLMS) são propostas. As abordagens propostas usam procedimentos baseados em dois métodos de otimização, a saber, os métodos da razão áurea e da busca tabu. Tais procedimentos são empregados para determinar os parâmetros ótimos em cada iteração do processo de adaptação dos algoritmos PNLMS e PNLMS melhorado (IPNLMS). A função objetivo adotada pelos procedimentos propostos é baseada no erro de estimação a posteriori. O estudo de desempenho realizado para avaliar o impacto dos parâmetros dos algoritmos PNLMS e IPNLMS no comportamento dos mesmos mostram que, com o auxílio de técnicas de otimização para escolher adequadamente tais parâmetros, o desempenho destes algoritmos pode ser melhorado, em termos de velocidade de convergência, para a identificação de plantas com elevado grau de esparsidade. O principal objetivo das metodologias propostas é melhorar a distribuição da energia de ativação entre os coeficientes dos algoritmos PNLMS e IPNLMS, usando valores de parâmetros que levam ao erro de estimação mínimo em cada iteração do processo de adaptação. Testes numéricos realizados (considerando diversos cenários nos quais a resposta impulsiva da planta é esparsa) mostram que as metodologias propostas alcançam velocidades de convergência superiores às dos algoritmos PNLMS e IPNLMS, além de outros algoritmos da classe PNLMS, tais como o algoritmo IPNLMS com controle de esparsidade (SCIPNLMS).
89

Circuitos divisores Newton-Raphson e Goldschmidt otimizados para filtro adaptativo NLMS aplicado no cancelamento de interferência

FURTADO, Vagner Guidotti 07 December 2017 (has links)
Submitted by Cristiane Chim (cristiane.chim@ucpel.edu.br) on 2018-05-08T17:34:22Z No. of bitstreams: 1 Vagner Guidotti Furtado (1).pdf: 2942442 bytes, checksum: a43c18ecb28456284d4b6c622f11210d (MD5) / Made available in DSpace on 2018-05-08T17:34:22Z (GMT). No. of bitstreams: 1 Vagner Guidotti Furtado (1).pdf: 2942442 bytes, checksum: a43c18ecb28456284d4b6c622f11210d (MD5) Previous issue date: 2017-12-07 / The division operation in digital systems has its relevance because it is a necessary function in several applications, such as general purpose processors, digital signal processors and microcontrollers. The digital divider circuit is of great architectural complexity and may occupy a considerable area in the design of an integrated circuit, and as a consequence may have a great influence on the static and dynamic power dissipation of the circuit as a whole. In relation to the application of dividing circuits in circuits of the Digital Signal Processing (DSP) area, adaptive filters have a particular appeal, especially when using algorithms that perform a normalization in the input signals. In view of the above, this work focuses on the proposition of algorithms, techniques for reducing energy consumption and logical area, proposition and implementation of efficient dividing circuit architectures for use in adaptive filters. The Newton-Raphson and Goldschmidt iterative dividing circuits both operating at fixed-point were specifically addressed. The results of the synthesis of the implemented architectures of the divisors with the proposed algorithms and techniques showed considerable reduction of power and logical area of the circuits. In particular, the dividing circuits were applied in adaptive filter architectures based on the NLMS (Normalized least Mean Square) algorithm, seeking to add to these filters, characteristics of good convergence speed, combined with the improvement in energy efficiency. The adaptive filters implemented are used in the case study of harmonic cancellation on electrocardiogram signals / A operação de divisão em sistemas digitais tem sua relevância por se tratar de uma função necessária em diversas aplicações, tais como processadores de propósito geral, processadores digitais de sinais e microcontroladores. O circuito divisor digital é de grande complexidade arquitetural, podendo ocupar uma área considerável no projeto de um circuito integrado, e por consequência pode ter uma grande influência na dissipação de potência estática e dinâmica do circuito como um todo. Em relação à aplicação de circuitos divisores em circuitos da área DSP (Digital Signal Processing), os filtros adaptativos têm um particular apelo, principalmente quando são utilizados algoritmos que realizam uma normalização nos sinais de entrada. Diante do exposto, este trabalho foca na proposição de algoritmos, técnicas de redução de consumo de energia e área lógica, proposição e implementação de arquiteturas de circuitos divisores eficientes para utilização em filtros adaptativos. Foram abordados em específico os circuitos divisores iterativos Newton-Raphson e Goldschmidt ambos operando em ponto-fixo. Os resultados da síntese das arquiteturas implementadas dos divisores com os algoritmos e técnicas propostas mostraram considerável redução de potência e área lógica dos circuitos. Em particular, os circuitos divisores foram aplicados em arquiteturas de filtros adaptativos baseadas no algoritmo NLMS (Normalized least Mean Square), buscando agregar a esses filtros, características de boa velocidade de convergência, aliada à melhoria na eficiência energética. Os filtros adaptativos implementados são utilizados no estudo de caso de cancelamento de harmônicas em sinais de eletrocardiograma (ECG)
90

Algoritmos eficientes para equalização autodidata de sinais QAM. / Efficient algorithms for blind equalization of QAM signals.

Mendes Filho, João 30 November 2011 (has links)
Neste trabalho, são propostos e analisados algoritmos autodidatas eficientes para a equalização de canais de comunicação, considerando a transmissão de sinais QAM (quadrature amplitude modulation). Suas funções de erro são construídas de forma a fazer com que o erro de estimação seja igual a zero nas coordenadas dos símbolos da constelação. Essa característica os possibilita ter um desempenho similar ao de um algoritmo de equalização supervisionada como o NLMS (normalized least mean-square), independentemente da ordem da constelação QAM. Verifica-se analiticamente que, sob certas condições favoráveis para a equalização, os vetores de coeficientes dos algoritmos propostos e a correspondente solução de Wiener são colineares. Além disso, usando a informação da estimativa do símbolo transmitido e de seus símbolos vizinhos, esquemas de baixo custo computacional são propostos para aumentar a velocidade de convergência dos algoritmos. No caso do algoritmo baseado no critério do módulo constante, evita-se sua divergência através de um mecanismo que descarta estimativas inconsistentes dos símbolos transmitidos. Adicionalmente, apresenta-se uma análise de rastreio (tracking), que permite obter expressões analíticas para o erro quadrático médio em excesso dos algoritmos propostos em ambientes estacionários e não-estacionários. Através dessas expressões, verifica-se que com sobreamostragem, ausência de ruído e ambiente estacionário, os algoritmos propostos podem alcançar a equalização perfeita, independentemente da ordem da constelação QAM. Os algoritmos são estendidos para a adaptação conjunta dos filtros direto e de realimentação do equalizador de decisão realimentada, levando-se em conta um mecanismo que evita soluções degeneradas. Resultados de simulação sugerem que a utilização dos esquemas aqui propostos pode ser vantajosa na recuperação de sinais QAM, fazendo com que seja desnecessário o chaveamento para o algoritmo de decisão direta. / In this work, we propose efficient blind algorithms for equalization of communication channels, considering the transmission of QAM (quadrature amplitude modulation) signals. Their error functions are constructed in order to make the estimation error equal to zero at the coordinates of the constellation symbols. This characteristic enables the proposed algorithms to have a similar performance to that of a supervised equalization algorithm as the NLMS (normalized least mean-square), independently of the QAM order. Under some favorable conditions, we verify analytically that the coefficient vector of the proposed algorithms are collinear with the Wiener solution. Furthermore, using the information of the symbol estimate in conjunction with its neighborhood, we propose schemes of low computational cost in order to improve their convergence rate. The divergence of the constant-modulus based algorithm is avoided by using a mechanism, which disregards nonconsistent estimates of the transmitted symbols. Additionally, we present a tracking analysis in which we obtain analytical expressions for the excess mean-square error in stationary and nonstationary environments. From these expressions, we verify that using a fractionally-spaced equalizer in a noiseless stationary environment, the proposed algorithms can achieve perfect equalization, independently of the QAM order. The algorithms are extended to jointly adapt the feedforward and feedback filters of the decision feedback equalizer, taking into account a mechanism to avoid degenerative solutions. Simulation results suggest that the proposed schemes may be advantageously used to recover QAM signals and make the switching to the decision direct mode unnecessary.

Page generated in 0.0866 seconds