• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptive tension, self-organization and emergence : a complex system perspective of supply chain disruptions

Tewari, Anurag January 2017 (has links)
The purpose of this thesis was to explore how microstate human interactions produce macro level self-organization and emergence in a supply disruption scenario, as well as discover factors and typical human behaviour that bring about disruptions. This study argues that the complex adaptive system’s view of complexity is most suited scholarly foundation for this research enquiry. Drawing on the dissipative structure based explanation of emergence and self-organization in a complex adaptive system, this thesis further argues that an energy gradient between the ongoing and designed system conditions, known as adaptive tension, causes supply chains to self-organize and emerge. This study adopts a critical realist ontology operationalized by a qualitative case research and grounded theory based analysis. The data was collected using repertory grid interviews of 22 supply chain executives from 21 firms. In all 167 cases of supply disruptions were investigated. Findings illustrate that agent behaviours like loss of trust, over ambitious pursuit, use of power and privilege, conspiring against best practices and heedless performance were contributing to disruption. Impacted by these behaviours, supply chains demonstrated impaired disruption management capabilities and increased disruption probability. It was also discovered that some of these system patterns and microstate agent behaviours pushed the supply chains to a zone of emergent complexity where these networks self-organized and emerged into new structures or embraced changes in prevailing processes or goals. A conceptual model was developed to explain the transition from micro agent behaviour to system level self-organization and emergence. The model described alternate pathways of a supply chain under adaptive tension. The research makes three primary research contributions. Firstly, based upon the theoretical model, this research presents a conceptualization of supply chain emergence and self-organization from dissipative structures and adaptive tension based view of complexity. Secondly, it formally introduces and validates the role of behavioural and cognitive element of human actions in a supply chain scenario. Lastly, it affirms the complex adaptive system based conceptualization of supply chain networks. These contributions succeed in providing organizations with an explanation for observed deviations in their operations performance using a behavioural aspect of human agents.
2

Adaptive tension, self-organization and emergence : A complex system perspective of supply chain disruptions

Tewari, Anurag 03 1900 (has links)
The purpose of this thesis was to explore how microstate human interactions produce macro level self-organization and emergence in a supply disruption scenario, as well as discover factors and typical human behaviour that bring about disruptions. This study argues that the complex adaptive system’s view of complexity is most suited scholarly foundation for this research enquiry. Drawing on the dissipative structure based explanation of emergence and self-organization in a complex adaptive system, this thesis further argues that an energy gradient between the ongoing and designed system conditions, known as adaptive tension, causes supply chains to self-organize and emerge. This study adopts a critical realist ontology operationalized by a qualitative case research and grounded theory based analysis. The data was collected using repertory grid interviews of 22 supply chain executives from 21 firms. In all 167 cases of supply disruptions were investigated. Findings illustrate that agent behaviours like loss of trust, over ambitious pursuit, use of power and privilege, conspiring against best practices and heedless performance were contributing to disruption. Impacted by these behaviours, supply chains demonstrated impaired disruption management capabilities and increased disruption probability. It was also discovered that some of these system patterns and microstate agent behaviours pushed the supply chains to a zone of emergent complexity where these networks self-organized and emerged into new structures or embraced changes in prevailing processes or goals. A conceptual model was developed to explain the transition from micro agent behaviour to system level self-organization and emergence. The model described alternate pathways of a supply chain under adaptive tension. The research makes three primary research contributions. Firstly, based upon the theoretical model, this research presents a conceptualization of supply chain emergence and self-organization from dissipative structures and adaptive tension based view of complexity. Secondly, it formally introduces and validates the role of behavioural and cognitive element of human actions in a supply chain scenario. Lastly, it affirms the complex adaptive system based conceptualization of supply chain networks. These contributions succeed in providing organizations with an explanation for observed deviations in their operations performance using a behavioural aspect of human agents.
3

Neural-Network and Fuzzy-Logic Learning and Control of Linear and Nonlinear Dynamic Systems

Liut, Daniel Armando 05 October 1999 (has links)
The goal of this thesis is to develop nontraditional strategies to provide motion control for different engineering applications. We focus our attention on three topics: 1) roll reduction of ships in a seaway; 2) response reduction of buildings under seismic excitations; 3) new training strategies and neural-network configurations. The first topic of this research is based on a multidisciplinary simulation, which includes ship-motion simulation by means of a numerical model called LAMP, the modeling of fins and computation of the hydrodynamic forces produced by them, and a neural-network/fuzzy-logic controller. LAMP is based on a source-panel method to model the flowfield around the ship, whereas the fins are modeled by a general unsteady vortex-lattice method. The ship is considered to be a rigid body and the complete equations of motion are integrated numerically in the time domain. The motion of the ship and the complete flowfield are calculated simultaneously and interactively. The neural-network/fuzzy-logic controller can be progressively trained. The second topic is the development of a neural-network-based approach for the control of seismic structural response. To this end, a two-dimensional linear model and a hysteretic model of a multistory building are used. To control the response of the structure a tuned mass damper is located on the roof of the building. Such devices provide a good passive reduction. Once the mass damper is properly tuned, active control is added to improve the already efficient passive controller. This is achieved by means of a neural network. As part of the last topic, two new flexible and expeditious training strategies are developed to train the neural-network and fuzzy-logic controllers for both naval and civil engineering applications. The first strategy is based on a load-matching procedure, which seeks to adjust the controller in order to counteract the loads (forces and moments) which generate the motion that is to be reduced. A second training strategy provides training by means of an adaptive gradient search. This technique provides a wide flexibility in defining the parameters to be optimized. Also a novel neural-network approach called modal neural network is designed as a suitable controller for multiple-input multiple output control systems (MIMO). / Ph. D.

Page generated in 0.0652 seconds