11 |
Experimental Investigation of Fluid-added Parameters on a Kaplan RunnerStrandberg, Malin January 2021 (has links)
In order to reach climate and environmental goals, Sweden is increasing the implementation of intermittent renewable energy sources such as wind and solar power to the electricity grid. The increase of intermittent energy sources is rising power regulation requirement towards hydropower, which increasingly exposes the hydraulic turbines to high loads and fluctuating hydraulic forces. These conditions affect the turbine’s structural and rotor dynamic behavior, leading to fatigue in turbine components. Identifying the parameters that affect the dynamics of the water turbine is an essential part of analyzing and, if possible, avoiding these situations. Furthermore, accurate rotor dynamic models are necessary to design for a robust hydropower unit and improve the estimate of wear on turbine components. Added parameters (added mass, polar moment of inertia, and damping) are hydrodynamic effects occurring due to interaction between structural vibrations and surrounding fluid. Added parameters can modify the turbine’s natural frequencies and consequently its dynamic behavior. Therefore, it is of interest to study and quantify the impact of these parameters on the turbine for accurate rotor dynamic modeling and turbine design. The added parameters have been investigated by conducting experiments on a model Kaplan runner, for which the project has been divided into two consecutive parts. First, experiments were performed in a test rig, in which the runner was excited in a lateral movement to determine added mass and linear damping. Secondly, experiments were performed in a test rig similar to the first, except the runner was excited in a torsional movement to determine added polar moment of inertia and torsional damping. Force and displacement have been measured during both movements, with the runner placed in air and thereafter in quiescent water. The added parameters were quantified by comparing measurements conducted with the runner in air against those conducted in water. By varying the excitation frequency and amplitude, added parameters have been analyzed against excitation frequency, velocity, and acceleration to determine dependent variables. The dimensionless added mass ratio, γma, was investigated within a range of acceleration of 0.07m/s2 to 5.00 m/s2 and in an excitation frequency of 2-9 Hz. Results exhibited a frequency-dependent added mass ratio, leading to a mass addition variation of 1.00-1.49 times the test rig mass with a mean γma of 1.22. Similarly, the dimensionless added polar moment of inertia, γIp, was investigated within a range of angular acceleration between 2.4 rad/s2 to 29.6 rad/s2 and in an excitation frequency range of 2-10 Hz. The mean added polar inertia ratio, γIp, was obtained as 1.09 times the polar moment of inertia of the test rig, corresponding to an increase in polar inertia of about 9%, compared to the total dry polar inertia of the test rig. Results showed that the added polar inertia ratio varied by approximately 1.8% within the studied frequency range. Thus, no frequency dependence could be determined. Due to measurement uncertainties and limitations of the test rigs, added linear damping and torsional damping could not be determined in either of the existing test rigs (lateral and torsional movement).
|
12 |
Analysis and Modeling of Hydrodynamic Components for Ship Roll Motion in Heavy WeatherBassler, Christopher Colby 21 June 2013 (has links)
Ship roll motion has been the subject of many studies, because of the complexities associated with this mode of ship motion, and its impact on operability, safety, and survivability. Estimation and prediction of the energy transfer and dissipation of the hydrodynamic components, added inertia and damping, is essential to accurately describe the roll motions of a ship. This is especially true for ship operations in moderate to extreme sea conditions. In these conditions, a complex process of energy transfer occurs, which alters the physical behavior of the hydrodynamic components, and ultimately affects the amplitude of ship roll motion.
Bilge keels have been used on ships for nearly two centuries, to increase damping and reduce the severity of roll motions experienced by a ship in waves. Because ship motions are more severe in extreme sea conditions, large roll angles may occur. With the possibility of crew injury, cargo damage, or even capsize, it is important to understand the behavior of the roll added inertia and damping for these conditions. Dead ship conditions, where ships may experience excitation from beam, or near beam, seas present a worst case scenario in heavy weather. The behavior of a ship in this condition should be considered in both the design and assessment of seakeeping performance.
In this study, hydrodynamic component models of roll added inertia and roll damping were examined and assessed to be unsuitable for accurate prediction of ship motions in heavy weather. A series of model experiments and numerical studies were carried out and analyzed to provide improved understanding of the essential physical phenomena which affect the hydrodynamic components and occur during large amplitude roll motion. These observations served to confirm the hypothesis that the existing models for roll added inertia and damping in large amplitude motions are not sufficient. The change in added inertia and damping behavior for large roll motion is largely due to the effects of hull form geometry, including the bilge keels and topside geometry, and their interactions with the free surface. Therefore, the changes in added inertia and damping must be considered in models to describe and predict roll motions in severe wave environments.
Based on the observations and analysis from both experimental and numerical methods, several time-domain model formulations were proposed and examined to model hydrodynamic components of large amplitude roll motions. These time-domain formulations included an analytical model with memory effects, a piecewise formulation, and several possibilities for a bilge keel force model. Although a piecewise model for roll damping was proposed, which can improve the applicability of traditional formulations for roll damping to heavy weather conditions, a further attempt was undertaken to develop a more detailed model specifically for the bilge keel force. This model was based on the consideration of large amplitude effects on the hydrodynamic components of the bilge keel force. Both the piecewise and bilge keel force models have the possibility to enable improved accuracy of potential flow-based numerical prediction of ship roll motion in heavy weather. However, additional development remains to address issues for further practical implementation. / Ph. D.
|
13 |
Vývoj nových typů okrajových podmínek pro interakci těles s tekutinami a jejich implementace do komerčních výpočtových systémů / New Types of Boundary Conditions for Solution of Fluid Structure Interaction Problems and their Implementation in Commercial Simulation SoftwarePohanka, Lukáš January 2012 (has links)
New approach for computational modeling of the dynamic behavior of elastic body immersed in incompressible viscous stagnant fluid is described in this work. It is based on determination of added effects (added mass and added damping). This effects are inserted into computational model and it replace influence of the fluid. Commonly used commercial computational software may be used. Approach is based on assumption appropriate for the linear flow. Two pressure field are determined. One for movement of the unite acceleration of the fluid boundary and the second for unite velocity. Nonlinear model (Navier-Stokes equation in ALE form) had to be used for determination of the added damping, hence results are valid only for pre-selected amplitude of vibration.
|
14 |
Développement d'un modèle numérique de couplage fluide-structure appliqué au cas d'une pompe à membrane ondulante / Development of a numerical model using fluid-structure interaction method apply to an undulating membrane pumpSong, Mengdi 20 June 2013 (has links)
Dans cette thèse, nous avons étudié la simulation numérique des phénomènes d’interaction fluide-structure (IFS) par la méthode des éléments finis pour un fluide incompressible et non visqueux en interaction avec une structure flexible. Les modèles numériques développés sont basé sur une approche d’IFS partitionnée. Une amélioration basée sur une compensation des effets de massé ajoutée est proposée au cours de la thèse afin d’assurer la convergence et la stabilité du schéma de couplage partitionné indépendamment de la densité du fluide impliqué. L’approche corrective nécessite une estimation de la matrice de masse ajoutée et demande une légère modification de l’algorithme itératif. Les méthodes proposées ont été validées sur les cas académiques en comparaison avec les solutions analytiques et sont appliqués au cas d’une nouvelle conception de pompe pour tout type de fluides (gaz, liquides, fluide chargé…), en vue d’affiner la compréhension de son fonctionnement et ainsi mieux la caractériser. Les méthodes ainsi que les validations sont publiées sur un article qui a été accepté par le revue scientifique « Computers & Fluids ». Une présentation orale a effectuée pendant la conférence internationale ACE-X2012 à Istanbul et une autre a été accepté par la conférence nationale CSMA-2013 à Giens. / The numerical simulation of fluid-structure interaction (FSI) by the finite element method has been studied in the context of an incompressible and inviscid flow interacting with a very flexible structure.The numerical models developed in this work are based on a partitioned FSI approach. An improvement based on a compensation of the added-mass effect is proposed during the PhD research in order to ensure the convergence and the stability of the partitioned coupling scheme for all fluids regardless of its density. This simple correction requires to estimate the added-mass matrix and to modify slightly the iterative algorithm.The proposed methods were validated by comparing with analytical solutions for several academic cases and are applied to a novel pumping technology, which is applicable to all kinds of fluid (gas, liquid, slurry...). The main objective is to provide a better understanding about its operations and to improve the designing of pump. The methods and the validation cases are published in an article which has been accepted by the scientific review Computers & Fluids. They were also presented during the international conference ACE-X2012 in Istanbul and have been accepted and scheduled for oral presentation during the national conference CSMA-2013 in Giens.
|
15 |
Static characteristics and rotordynamic coefficients of a four-pad tilting-pad journal bearing with ball-in-socket pivots in load-between-pad configurationHarris, Joel Mark 15 May 2009 (has links)
Static characteristics and rotordynamic coefficients were experimentally
determined for a four-pad tilting-pad journal bearing with ball-in-socket pivots in loadbetween-
pad configuration. A frequency-independent [M]-[C]-[K] model fit the
measurements reasonably well, except for the cross-coupled damping coefficients. Test
conditions included speeds from 4,000 to 12,000 rpm and unit loads from 0 to 1896 kPa
(0 to 275 psi).
The test bearing was manufactured by Rotating Machinery Technology (RMT),
Inc. Though it has a nominal diameter of 101.78 mm (4.0070 in.), measurements
indicated significant bearing crush with radial bearing clearances of 99.6 μm (3.92 mils)
and 54.6 μm (2.15 mils) in the axes 45º counterclockwise and 45º clockwise from the
loaded axis, respectively. The pad length is 101.6 mm (4.00 in.), giving L/D = 1.00.
The pad arc angle is 73º, and the pivot offset ratio is 65%. The preloads of the loaded
and unloaded pads are 0.37 and 0.58, respectively.
A bulk-flow Navier-Stokes model was used for predictions, using adiabatic
conditions for the bearing fluid. Because the model assumes constant nominal
clearances at all pads, the average of the measured clearances was used as an estimate.
Eccentricities and attitude angles were markedly under predicted while power loss was
under predicted at low speeds and very well predicted at high speeds. The maximum detected pad temperature was 71ºC (160ºF) and the rise from inlet to maximum bearing
temperature was over predicted by 10-40%.
Multiple-frequency force inputs were used to excite the bearing. Direct stiffness
and damping coefficients were significantly over predicted, but addition of a simple
stiffness-in-series model substantially improved the agreement between theory and
experiment. Direct added masses were zero or negative at low speeds and increased
with speed up to a maximum of about 50 kg; they were normally greater in the unloaded
direction. Although significant cross-coupled stiffness terms were present, they always
had the same sign. The bearing had zero whirl frequency ratio netting unconditional
stability over all test conditions. Static stiffness in the y direction (obtained from steadystate
loading) matched the rotordynamic stiffness Kyy (obtained from multiple-frequency
excitation) reasonably at low loads but poorly at the maximum test load.
|
16 |
Hydroelastic Response of Hydrofoil Under Cavitation Conditions / Hydroelastic Response of Hydrofoil Under Cavitation ConditionsČupr, Pavel January 2021 (has links)
Tato disertační práce se zabývá experimentálním a výpočtovým výzkumem přídavných účinků od proudu kapaliny na obtékaný hydraulický profil. Dynamická odezva profilu byla analyzována pro dva typy buzení: buzení odtržením mezní vrstvy a Kármánových vírů a dále buzení pomocí externího budiče připojeného k lopatce. Experimentální měření dynamické odezvy profilu na oba typy buzení bylo provedeno pro lopatku umístěnou v kavitujícím a nekavitujícím proudění. Získané výsledky byly použity pro verifikaci přídavných účinků stanovených s využitím numerického modelování.
|
17 |
Experimentální stanovení vlivu kapaliny na kmitající těleso / Experimental determination of the liquid influence on an oscillating bodyGrešáková, Kristýna January 2018 (has links)
Damping and natural frequency of a vibrating body or a system is not easy to estimate during the design phase of~project. If the body is submerged in water, estimating becomes even more complicated. This~work focuses on experimental determination of the liquid influence on an oscillating body. The~presented modal analysis was executed on two bodies when being surrounded by air, but~also when gradually and fully submerged in water using two reservoirs with different dimensions. The collected data was analyzed with a suggested hybrid method, which determined the damping ratio and the natural frequency. Added mass was calculated employing the Ansys software. Part of the presented work focuses on the selection of a suitable time window for the Fourier transform.
|
18 |
U-RANS Simulation of fluid forces exerted upon an oscillating tube arrayDivaret, Lise January 2011 (has links)
The aim of this master thesis is to characterize the fluid forces applied to a fuel assembly inthe core of a nuclear power plant in case of seism. The forces are studied with a simplifiedtwo-dimensional model constituted of an array of 3 by 3 infinite cylinders oscillating in aclosed box. The axial flow of water, which convects the heat in the core of a nuclear powerplant, is also taken into account. The velocity of the axial flow reaches 4m/s in the middle ofthe assembly and modifies the forces features when the cylinders move laterally.The seism is modeled as a lateral displacement with high amplitude (several cylinderdiameters) and low frequencies (below 20 Hz). In order to study the effects of the amplitudeand of the frequency of the displacement, the displacement taken is a sine function withboth controlled amplitude and frequency. Four degrees of freedom of the system will bestudied: the amplitude of the displacement, its frequency, the axial velocity amplitude andthe confinement (due to the closed box).The fluid forces exerted on the cylinders can be seen as a combination of three terms: anadded mass, related to the acceleration of cylinders, a drift force, related to the damping ofthe fluid and a force due to the interaction of the cylinder with residual vortices. The firsttwo components will be characterized through the Morison expansion, and their evolutionwith the variation of the degree of freedom of the system will be quantified. The effect ofthe interaction with the residual vortices will be observed in the plots of the forces vs. timebut also in the velocity and vorticity map of the fluid.The fluid forces are calculated with the CFD code Code_Saturne, which uses a second orderaccurate finite volume method. Unsteady Reynolds Averaged Navier Stokes simulations arerealized with a k-epsilon turbulence model. The Arbitrary Lagrange Euler model is used todescribe the structure displacement. The domain is meshed with hexahedra with thesoftware gmsh [1] and the flow is visualized with Paraview [2]. The modeling techniquesused for the simulations are described in the first part of this master thesis.
|
19 |
Design of a Magnetostrictive-Hydraulic Actuator Considering Nonlinear System Dynamics and Fluid-Structure CouplingLarson, John P. 19 November 2014 (has links)
No description available.
|
20 |
Identification of Force Coefficients in Two Squeeze Film Dampers with a Central GrooveSeshagiri, Sanjeev 2011 May 1900 (has links)
Squeeze Film Dampers (SFD) provide viscous damping in rotor bearing systems to reduce lateral vibration amplitudes and to isolate mechanical components. Aircraft engine shafts, often supported on roller bearings, operate at high rotational speeds and are susceptible to large amplitude shaft whirl due to rotor imbalance. SFDs aid to reduce such large whirl amplitudes while also eliminating rotor instabilities.
he current work quantifies experimentally the forced performance of two parallel squeeze SFDs separated by a central groove. Force coefficients are identified in a specialized SFD test rig constructed to undergo similar operating and loading conditions as in jet engines. Of interest is to quantify the effect of a central feed groove on the forced performance of SFDs and to validate predictions from a computational tool. The test rig comprises of an elastically supported bearing structure and one of two journals. Tests are conducted on two open ends SFDs, both with diameter D and nominal radial clearance c; each damper with two parallel film land lengths L= 1/5 D and 2L, separated by a feed groove of width L and depth 3/4 L. ISO VG 2 grade lubricant oil flows into the central groove via 3 orifices, 120 degrees apart, and then through the film lands to finally exit to ambient. In operation, a static loader pulls the bearing to various static off center positions with respect to the stationary journal, and electromagnetic shakers (2,200 N) excite the test system with single frequency loads over a frequency range to generate rectilinear, circular and elliptical orbits with specified motion amplitudes. A frequency domain method identifies the SFD mechanical parameters, viz., stiffness, damping, and added mass coefficients.
The long damper generates 7 times more direct damping and 2 times more added mass compared to the short length damper. The damping coefficients are sensitive to the static eccentricity (up to 50 percent c) while showing lesser dependency on the amplitude of whirl motion (up to 20 percent c). On the other hand, added mass coefficients are nearly constant with static eccentricity and decrease with higher amplitudes of motion. The magnitudes of identified cross-coupled coefficients are insignificant for all imposed operating conditions for either damper.
Large dynamic pressures recorded in the central groove demonstrate the groove does not isolate the film lands by merely acting as a source of lubricant, but contributes to the generation of large added mass coefficients. The recorded dynamic pressures in the film lands and central groove do not evidence lubricant vapor or gas cavitation for the tested static eccentricities and amplitudes of motion.
The direct damping coefficients for both dampers are independent of excitation frequency over the frequency range of the tests. Predictions derived from a novel SFD computational tool that includes flow interactions in the central groove and oil supply orifices agree well with the experimental force coefficients for both dampers.
The current work advances the state of the art in SFDs for jet engines.
|
Page generated in 0.1364 seconds