• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Protein Profiling of Adenine Nucleoside and Nucleotide Analogs Binding Proteins Using N6-Biotinylated-8-azidoadenosine Analogs as Affinity Based Protein Profiling Probes

Mahajan, Shikha 01 January 2012 (has links)
Identification of differential expressions of proteins in proteomic profiles of biological samples shows great potential as a valuable technique for the early diagnosis of various diseases. An important challenge in modern protein profiling approaches is to reduce the complexity of the samples by limiting the number of proteins that need to be evaluated for distinction in the expression between normal and deceased cells. In this research, an affinity based approach for the enrichment of nucleotide and nucleoside binding proteins from a complex cell proteome has been developed. To achieve this goal, new N6-biotinylated-8-azido-adenosine probes (AdoRs) have been designed and synthesized to photolabel the nucleotide and nucleoside binding proteins. These probes contain a reactive group that forms a covalent bond with the target proteins, as well as a biotin tag for affinity enrichment using avidin chromatography. Further, a mass spectrometric protein profiling approach is employed to quantitatively identify small variations in expression of nucleoside and nucleotide binding proteins in samples of interest. Mouse neuroblastoma N18TG2 cell proteome has been used as a model system for the development of the LC-MS/MS based proteomic analysis of these affinity enriched protein fractions. Upon enrichment, the photolabeled proteome exhibited an approximately four-fold abundance of nucleoside and nucleotide binding proteins over nonlabeled proteome. The approach was extended to compare the proteomic profiles of nucleotide and nucleoside binding proteins in cancerous (Hey) and non-cancerous (T-80) human ovarian cell proteome. Certain proteins that were not detected in cell lysate were also identified in labeled proteome, thereby demonstrating the strength of our approach in enriching low abundant proteins. To substantiate the qualitative analysis, we have employed the Stable Isotope Labeling in Amino Acid Cell Culture (SILAC) for the quantitative study of the protein expression in cancerous and non-cancerous human ovarian cells. A modest panel of proteins with differential expressions in these cell lines was identified, a few of which have been correlated to various forms of cancer. Vimentin, stress induced phosphoprotein-1, and heat shock protein 90 that were identified to have altered expressions in these cell lines are among some of the proteins associated with ovarian cancer.

Page generated in 0.0592 seconds