1 |
Adequacy assessment of composite generation and transmission systems incorporating wind energy conversion systemsGao, Yi 24 March 2010
The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems.<p>
A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities.<p>
There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.
|
2 |
Adequacy assessment of composite generation and transmission systems incorporating wind energy conversion systemsGao, Yi 24 March 2010 (has links)
The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems.<p>
A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities.<p>
There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.
|
3 |
Adequacy Assessment in Power Systems Using Genetic Algorithm and Dynamic ProgrammingZhao, Dongbo 2010 December 1900 (has links)
In power system reliability analysis, state space pruning has been investigated to improve the efficiency of the conventional Monte Carlo Simulation (MCS). New algorithms have been proposed to prune the state space so as to make the Monte Carlo Simulation sample a residual state space with a higher density of failure states.
This thesis presents a modified Genetic Algorithm (GA) as the state space pruning tool, with higher efficiency and a controllable stopping criterion as well as better parameter selection. This method is tested using the IEEE Reliability Test System (RTS 79 and MRTS), and is compared with the original GA-MCS method. The modified GA shows better efficiency than the previous methods, and it is easier to have its parameters selected.
This thesis also presents a Dynamic Programming (DP) algorithm as an alternative state space pruning tool. This method is also tested with the IEEE Reliability Test System and it shows much better efficiency than using Monte Carlo Simulation alone.
|
4 |
Umsetzung des internen Kapitaladäquanzverfahrens Methoden zur Implementierung und Stand der Umsetzung in österreichischen GrossbankenWoschnagg, Elisabeth January 2009 (has links)
Zugl.: Wien, Univ., Diss., 2009
|
5 |
Neural Network Modeling for Prediction under Uncertainty in Energy System Applications. / Modélisation à base de réseaux de neurones dédiés à la prédiction sous incertitudes appliqué aux systèmes energétiquesAk, Ronay 02 July 2014 (has links)
Cette thèse s’intéresse à la problématique de la prédiction dans le cadre du design de systèmes énergétiques et des problèmes d’opération, et en particulier, à l’évaluation de l’adéquation de systèmes de production d’énergie renouvelables. L’objectif général est de développer une approche empirique pour générer des prédictions avec les incertitudes associées. En ce qui concerne cette direction de la recherche, une approche non paramétrique et empirique pour estimer les intervalles de prédiction (PIs) basés sur les réseaux de neurones (NNs) a été développée, quantifiant l’incertitude dans les prédictions due à la variabilité des données d’entrée et du comportement du système (i.e. due au comportement stochastique des sources renouvelables et de la demande d'énergie électrique), et des erreurs liées aux approximations faites pour établir le modèle de prédiction. Une nouvelle méthode basée sur l'optimisation multi-objectif pour estimer les PIs basée sur les réseaux de neurones et optimale à la fois en termes de précision (probabilité de couverture) et d’information (largeur d’intervalle) est proposée. L’ensemble de NN individuels par deux nouvelles approches est enfin présenté comme un moyen d’augmenter la performance des modèles. Des applications sur des études de cas réels démontrent la puissance de la méthode développée. / This Ph.D. work addresses the problem of prediction within energy systems design and operation problems, and particularly the adequacy assessment of renewable power generation systems. The general aim is to develop an empirical modeling framework for providing predictions with the associated uncertainties. Along this research direction, a non-parametric, empirical approach to estimate neural network (NN)-based prediction intervals (PIs) has been developed, accounting for the uncertainty in the predictions due to the variability in the input data and the system behavior (e.g. due to the stochastic behavior of the renewable sources and of the energy demand by the loads), and to model approximation errors. A novel multi-objective framework for estimating NN-based PIs, optimal in terms of both accuracy (coverage probability) and informativeness (interval width) is proposed. Ensembling of individual NNs via two novel approaches is proposed as a way to increase the performance of the models. Applications on real case studies demonstrate the power of the proposed framework.
|
Page generated in 0.0765 seconds