• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 19
  • 19
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms of Zn displacement through sandy soils

Carrillo-Gonzalez, Rogelio January 1999 (has links)
No description available.
2

The Surface Chemistry and Geochemistry of Feldspar Weathering

Houston, William Norman 09 1900 (has links)
<p> In this study the experiments were designed to measure the geochemical and surface charge (zeta potential) changes with time for two crushed samples of feldspar (Na-fs and K-fs) over the pH range of most natural waters (5 to 9). These experiments show: </p> <p> (a) the importance of adsorption/desorption phenomena in both short-term and long-term feldspar dissolution, and probably for chemical weathering in general; </p> <p> (b) that the generalized curve which characterizes the geochemical data (an initial rapid rise to a peak followed by a decrease to a lower, either constant or later increasing value) is consistent with a consideration of the adsorption/desorption process (i.e., the formation of the double layer) taking place at the feldspar surface and with the simple dissolution of the mineral; </p> <p> (c) that the cation-silica ratios (Na₂O/SiO₂, K₂O/SiO₂, CaO/SiO₂) of the solution compared to those in the original feldspar indicate an initially incongruent dissolution which tends towards congruency during the latter part of the experiments. </p> <p> From information in the Iiterature and the results of these experiments. it may be concluded that: </p> <p> (a) the most important or master variables in chemical weathering are abrasion, minerologic or crystallographic factors such as twinning, exsolution regions, impurities, fractures and grain size, and solution composition and concentration. pH does not appear to be a master variable in most natural waters, especially for long-term weathering, and the chemical composition of the mineral phase is also not a good criterion for predicting weathering behaviour; and </p> <p> (b) the most extreme chemical weathering should occur in a high energy environment, either for physical reasons (i.e., high abrasion due to extreme relief) or for chemical reasons (i.e., high rainfall). </p> / Thesis / Master of Science (MSc)
3

Transport de colloïdes en milieu poreux : étude expérimentale

Canseco Ruiz, Vladimir 09 July 2009 (has links)
La thèse traite du transport de particules colloïdales en milieu poreux. L'influence des propriétés physico-chimiques et hydrodynamiques sur le dépôt et détachement de particules de latex a été étudiée en réalisant des expériences durant lesquelles des grandeurs macroscopiques (concentration dans les effluents, réduction de perméabilité) et microscopiques (variation de porosité par atténuation gamma) ont été mesurées. / This thesis deals with colloidal particle transport in porous media. The influence of physicochemical and hydrodynamic conditions on the deposition and detachment of latex particles was studied by performing a series of experiments during which macroscopic (effluent concentration, permeability reduction) and microscopic (porosity variation) properties were measured.
4

Adsorption/Desorption Studies of Volatile Organic Compounds Generated from the Optoelectronics Industry by Zeolites

Hsu, Ching-shan 12 February 2006 (has links)
Adsorption/desorption behaviors of three volatile organic compounds (VOCs) emitted from the optoelectronics industry by Y-type and ZSM-5 zeolites were studied in this work. Target VOCs include acetone, isopropyl alcohol (IPA), and propylene glycol monomethyl ether acetate (PGMEA). Adsorption/desorption experiments were conducted in a fixed-bed column using various operating conditions to mimic the commercial ones. Also studied include the adsorption kinetics for single-component, two-component, and three-component cases. Experimental results of the single-adsorbate case by both model zeolites have shown that the amount of VOC adsorbed follows the order of PGMEA > IPA > Acetone. This is ascribed to the greatest molecular weight of PGMEA among three VOCs tested. The adsorption capacity of each zeolite for each target VOC was found to increase with its increasing initial concentration. Freundlich isotherm and Langmuir isotherm were found to be suitable for describing the adsorption behaviors for the single-adsorbate case. Results of the desorption experiments also showed that most of the target VOCs could be desorbed at 180¢J in 100 minutes. The adsorption capacities of the regenerated model zeolites were found to be decreasing as the regeneration times increased. As compared with the fresh ones, the regenerated zeolites had reduced specific surface areas, but increased pore sizes. In addition, the Yoon and Nelson equation was employed to study the kinetic behaviors of adsorbing the target VOCs by the model zeolites. A good agreement of the experimental results and predictions by the Yoon & Nelson model was obtained for the single-adsorbate case. However, the Yoon and Nelson model was found to be incompetent to simulate and predict all the multi-adsorbate cases including two-component adsorption and three-component adsorption in this work. Again, it is speculated that the displacement of lower-molecular-weight adsorbates (i.e., acetone and IPA) by PGMEA (an adsorbate of a much greater molecular weight) would be responsible for this finding. For the two-adsorbate case, nevertheless, the Yoon and Nelson equation was found to be capable of describing the adsorption behavior under the circumstance of C/C0 < 1.
5

Reducing Ultra-High-Purity (UHP) Gas Consumption by Characterization of Trace Contaminant Kinetic and Transport Behavior in UHP Fabrication Environments

Dittler, Roy Frank January 2014 (has links)
Trends show that the fraction of the world's population with electronic devices using modern integrated circuits is increasing at a rapid rate. To meet consumer demands: less expensive, faster, and smaller electronics; while still making a profit, manufacturers must shrink transistor dimensions while increasing the number of transistors per integrated circuit; a trend predicted by Gorden E. Moore more than 44 years prior. As CMOS transistors scale down in size, new techniques such as atomic-layer deposition (ALD) are used to grow features one atomic layer at a time. ALD and other manufacturing processes are requiring increasingly stringent purities of process gases and liquids in order to minimize circuit killing defects which reduces yield and drives up manufacturing cost. Circuit killing defects caused by impurity incursions into UHP gas distribution system can come from a variety of sources and one of the impurity transport mechanisms investigated was back diffusion; the transport of impurities against convective flow. Once impurity incursions transpire, entire production lines are shut down and purging with UHP gas is initiated; a process that can take months thus resulting in tens of millions of dollars in lost revenue and substantial environment, safety, and health (ESH) impacts associated with high purge gas consumption. A combination of experimental investigation and process simulation was used to analyze the effect of various operational parameters on impurity back diffusion into UHP gas distribution systems. Advanced and highly sensitive analytical equipment, such as the Tiger Optics MTO 1000 H2O cavity ring-down spectrometer (CRDS), was used in experiments to measure real time back diffusing moisture concentrations exiting an electro-polished stainless-steel (EPSS) UHP distribution pipe. Design and operating parameters; main and lateral flow rates, system pressure, restrictive flow orifice (RFO) aperture size, and lateral length were changed to impact the extent of back diffusing impurities from a venting lateral. The process model developed in this work was validated by comparing its predictions with data from the experiment test bed. The process model includes convection, molecular diffusion in the bulk, surface diffusion, boundary layer transport, and all modes of dispersion; applicable in both laminar and turbulent flow regimes. Fluid dynamic properties were directly measured or were obtained by solving Navier-Stokes and continuity equations. Surface diffusion as well as convection and dispersion in the bulk fluid played a strong role in the transport of moisture from vents and lateral branches into the main line. In this analysis, a dimensionless number (Peclet Number) was derived and applied as the key indicator of the relative significance of various transport mechanisms in moisture back-diffusion. Guidelines and critical values of Peclet number were identified for assuring the operating conditions meet the purity requirements at the point of use while minimizing UHP gas usage. These guidelines allowed the determination of lateral lengths, lateral diameters, flow rates, and restrictive flow device configurations to minimize contamination and UHP gas consumption. Once a distribution system is contaminated, a significant amount of purge time is required to recover the system background due to the strong interactions between moisture molecules and the inner surfaces of the components in a gas distribution system. Because of the very high cost of UHP gases and factory downtime, it is critical for high-volume semiconductor manufacturers to reduce purge gas usage as well as purge time during the dry-down process. The removal of moisture contamination in UHP gas distribution systems was approached by using a novel technique dubbed pressure cyclic purge (PCP). EPSS piping was contaminated with moisture, from a controlled source, and then purged using a conventional purge technique or a PCP technique. Moisture removal rates and overall moisture removal was determined by measuring gas phase moisture concentration in real time via a CRDS moisture analyzer. When compared to conventional purge, PCP reduced the time required and purge gas needed to clean the UHP gas distribution systems. However, results indicate that indiscriminately initiating PCP can have less than ideal or even detrimental results. An investigation of purge techniques on the removal of gas phase, chemisorbed, and physisorbed moisture, coupled with the model predictions, led to the testing of hybrid PCP. The hybrid PCP approach proved to be the most adaptable purge technique and was used in next phase of testing and modeling. Experiments and modeling progressed to include testing the effectiveness of hybrid PCP in systems with laterals; more specifically, laterals that are "dead volumes" and results show that hybrid PCP becomes more purge time and purge gas efficient in systems with increasing number and size of dead volumes. The process model was used as a dry-down optimization tool requiring inputs of; geometry and size, temperature, starting contamination level, pressure swing limits of inline equipment, target cleanliness, and optimization goals; such as, minimizing pure time, minimizing purge gas usage, or minimizing total dry-down cost.
6

Simultane Ad- und Desorption von Chlorwasserstoff und Schwefeldioxid an mit Magnesiumoxid imprägniertem Aktivkoks

Ernst, Ralph. Unknown Date (has links)
Techn. Universiẗat, Diss., 2002--Darmstadt.
7

Phosphorus Sorption Dynamics in Shallow Groundwater, Coastal Everglades, Florida, USA

Flower, Hilary 08 November 2015 (has links)
For this dissertation I studied phosphorus (P) sorption dynamics in the shallow groundwater of the southern Everglades. In particular, I examined how the ambient water type governs soluble reactive P (SRP) availability through adsorption/desorption reactions with the aquifer matrix. Chapter 2 investigated how P sorption dynamics of the mangrove root zone sediment are affected by high bicarbonate brackish groundwater compared to both fresh groundwater and saltwater. The results from chapter 2 show that the sediment exhibited exceptionally low sorption efficiency in the high bicarbonate brackish water, which would allow ambient water SRP concentration to be maintained at a higher level. Chapter 3 is a detailed analysis of how P sorption dynamics in two bedrock samples are affected by incremental increases in saltwater content in a freshwater-saltwater transition zone. The results of chapter 3 indicate that a sorption edge occurs at 3 mM Cl- concentration. In water exceeding this Cl- concentration, SRP would be expected to desorb from the bedrock due to a sharp decrease in sorption efficiency between the freshwater saltwater. These results suggest that SRP is active in the ion exchange front of saltwater intrusion, with a rapid increase in SRP availability expected at the leading edge of saltwater intrusion. A landward incursion of 3 mM Cl- concentration water would be expected to raise ambient SRP concentration along the affected aquifer zone, in turn increasing SRP availability in the ecosystem where the transitional waters discharge to the surface. Chapter 4 investigates the kinetics SRP release accompanying saltwater intrusion using a column of carbonate aquifer solids and alternating inflow between fresh groundwater and saltwater. The results show an immediate and high magnitude increase in SRP concentration when saltwater flows into the column. The combined results of this dissertation show that, in the southern Everglades and possibly other carbonate coastlines as well, water type strongly controls P sorption behavior of the sediment and bedrock, and may have a direct influence on the local ecology through increased P availability. A fundamental understanding of the abiotic exchange mechanisms between SRP and the aquifer solids can aid in the successful management and protection of this unique and important ecosystem.
8

Synthesis, characterization and application of amine-modified Macadamia nutshell adsorbents and ion imprinted polymers for the sequestration of Cr(VI) ions from aqueous solution

Nchoe, Obakeng Boikanyo 08 1900 (has links)
M. Tech (Department of Chemistry, Faculty of Applied and Computer Sciences) Vaal University of Technology. / Persisting challenges associated with remediation of heavy metals from aqueous media have stirred the need for enhancement of current technologies. Cellulosic agro waste materials (AWM) as well as ion-imprinted polymers (IIP) have received ardent attention from researchers. These materials are often employed in the following industries: water and wastewater treatment, medical, pharmaceutical and packaging. Applications in water and wastewater treatment have gained significant interest due to desirable features they possess. In the case of AWM, these features include a tuneable surface area and poor porosity, basic surface functional groups and chemical stability. Some desired features in IIP include adsorption sites compatible for the ion imprint obtained after leaching with suitable reagents, rigidity and reusability. The efficacy of employing AWM and IIP for the remediation of toxic chromium from aqueous solution was explored. The current study is made up of part A and B. In part A, Macadamia nutshell powder was treated using HNO3, NaOH, as well as Fenton’s reagent. The three materials underwent a new modification which involved reacting treated adsorbents with cetyltrimethylammonium chloride (CTAC), followed by immobilization of 1,5' diphenylcarbazide (DPC) ligand. The adsorbents were ultimately washed, dried and stored for Cr(VI) batch adsorption experiments. Part B involved a synthesis of IIP and their non-imprinted polymer counterpart (NIP) for Cr(VI) sequestration in aqueous solution. This was done by precipitation polymerization of functional monomers, crosslinker and DPC-Cr(VI) complex as a template. Non-imprinted polymers were fashioned in a manner like that of IIP but with the exclusion of Cr(VI) ion template. Characterizations of the adsorbents were done using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and carbon, hydrogen, nitrogen and sulphur (CHNS) analyzer. Batch adsorption experiments were done and parameters such as solution pH, adsorbent dosage, initial Cr(VI) concentration and contact time were optimized. Working solutions were analyzed using ultraviolet-visible (UV-Vis) and atomic absorption (AA) spectroscopy. Adsorption parameters found to be optimum for DPC immobilized cellulosic adsorbents were pH 1.4, adsorbent mass of 0.1 g, 100 mg/L initial concentration and 125 minutes of contact time. The adsorption parameters determined to be optimum for IIP and NIP were pH 2.6, 0.2 g adsorbent mass, 80 mg/L initial concentration and 240 minutes of contact time. Reusability studies demonstrated the potential of adsorbents to remove Cr(VI) ions from aqueous media after successive adsorption-desorption cycles. Selectivity studies indicated that DPC immobilized adsorbents as well as IIP were able to selectively adsorb Cr(VI) ions from aqueous media in the presence of Zn(II), Cu(II), Co(II) and NI(II) ions. Kinetic models revealed that DPC immobilized cellulosic adsorbents and synthetic IIP were most fitting for pseudo-second order and pseudo first order, respectively. On the other hand, adsorption isotherm studies demonstrated that DPC immobilized cellulosic adsorbents and synthetic polymers were best fit for Freundlich and Langmuir adsorption isotherm, respectively.
9

Novel integrated scheme for destruction of hydrophobic hazardous air pollutants

Aly Hassan, Ashraf 28 September 2010 (has links)
No description available.
10

Comprehensive Methods for Contamination Control in UHP Fluids

Jhothiraman, Jivaan Kishore January 2016 (has links)
The demand for high performance electronic devices is ever increasing in today's world with advent of digital technology in every field. In order to support this fast paced growth and incursion of digital technology in society, smarter, smaller integrated circuits are required at a lower cost. This primary requirement drives semiconductor industries towards the integration of larger number of smaller transistors on a given circuit area. The past decades have seen a rapid evolution of material processing and fabrication techniques, as focus shifts from submicron to sub-nanometer length scales in device configuration. As the functional feature size of an integrated circuit decreases, the threshold of defect causing impurities rises drastically. Huge amount of resources are spent in downstream and upstream processing in order to restore system from contamination upsets and in the upkeep of Ultra-High-Purity (UHP) process streams to meet these stringent requirements. Contamination once introduced into the system also drastically reduces process yield and throughput resulting in huge losses in revenue. Regular UHP fluid distribution system maintenance as well as restorative operations involve a purging operation typically known as Steady State Purge (SSP). This purge operation involves large amount of expensive UHP gas and time. Depending on the scale of the system and type of process involved this results in significant tool, process downtimes and can have a wide range of environment, health and safety (ESH) ramifications. A novel purge process, referred to as Pressure Cyclic Purge (PCP) was studied for establishing gas phase contamination control in UHP applications. In understanding the basic mechanism of this technique and to analyze its extent of application in aiding purging operations, a coupled approach involving experimental investigation and computational process modelling was used. Representative and generic distribution sections such as main supply lines and sections with laterals were contaminated with a known amount of moisture as impurity. The dynamics of the impurity transport through the system from purging with SSP as well as PCP was captured by a highly sensitive analyzer. The surface interactions between the moisture and EPSS were characterized in terms of adsorption and desorption rate constants and surface site density. A computational process model trained using experimental data was then validated and used to study the steady and cyclic purge mechanisms and predict complex purge scenarios. Industrially relevant and applicable boundary conditions and system definitions were used to increases the utility of the computational tool. Although SSP compared closely with PCP on simple systems without laterals, a drastic difference in dry-down efficiency was noticed in systems with dead volumes in the form of capped laterals. Studies on system design parameters revealed that the disparity in performance was observed to increase with larger number and surface area of dead volumes, opening a path to critical understanding of the differences in process mechanisms. Beneficial transient pressure gradient induced convective flow in the dead volumes during cyclic purge was identified to be the main factor driving the enhanced dry down rate. Similar trends were observed on using surface concentration as the purge metric. Hybrid purge schemes involving a combination of SSP and PCP were found to yield higher benefit in terms of efficient use of purge gas. Removal of strongly interacting contaminant species showed a higher benefit from use of controlled PCP scheme. Although, parametric analysis carried out on the operating factors of cyclic purge suggested that the enhancement in dry down increased with higher pressure range, it was highly conditional towards configurational factors in design and operation such as system dimensions, holding time, cycling pattern, valve loss coefficients and the complex inter coupling between them. The robustness of the process simulator allows the development of optimal purge scenarios for a given set of system parameters in order to perform a controlled purge. The benefit of using a hybrid PCP scheme was evaluated in terms of UHP purge gas and process time as a function of purity baseline required. Apart from UHP gas distribution systems, process vessels, chambers and components along the process stream are also prone to molecular contamination and pose a threat to product integrity. The dead volumes acting as areas of contaminant accumulation represent cavities or dead spaces in flow control elements such as mass flow controllers (MFCs), gauges, valves or dead spaces in process chambers. Steady purge has very little effect in cleanup of such areas and more efficient methods are necessitated to raise purge efficiency. The analysis of application of PCP is extended to such components through the development of a robust and comprehensive process simulator. The computational model applies a three dimensional physical model to analyze purge scenarios with steady and cyclic purge. The results presented pertain to any generic gas phase contaminant and electronic grade steel surfaces. Close investigation of the purge process helped elaborate the cleaning mechanism. Critical steps driving the purge process were identified as - dilution of chamber by introduction of fresh gas during re-pressurization and chamber venting during depressurization. Surface and gas phase purging of chambers with dead spaces using steady and cyclic purge were studied and compared. Cyclic purge exhibited a higher rate of dry down. The effect of system, design and purge operating parameters on surface cleaning were studied. Although higher frequency cycles and larger operating pressure ranges optimized for a given geometry are found to deliver better pressure cyclic purge (PCP) performances, the benefit is found to be contingent to a strong interplay between system parameters. PCP is found to be advantageous than steady state purge (SSP) in terms of purge gas usage and operation time in reaching a certain purity baseline. Specialty process gases supplied to the fabrication facility are typically stored in the form of liquids in enormous tanks outside the fab. Ammonia is a widely used in UHP concentrations for a variety of process including epitaxial growth, MOCVD, etching and wet processes in the semiconductor industry. The recent development in LED research has risen the demand and supply for Ammonia based compounds. Stringent baselines are maintained for the impurities associated with the manufacturing of such gases (e.g. Moisture in Ammonia). Apart from the difference in the rates of evaporation of the individual species from the storage cylinder causing accumulation of slower evaporating species, external temperature fluctuations also generate unsteady flux of desired species. When concentrations rise above this threshold additional purification or in most cases discarding large volumes of unused gas is warranted, causing loss of resources and causing ESH issues. Bulk gases are usually delivered over long lengths of large diameter pipes which produce large density of adsorption sites for contaminants to accumulate and eventually release into the gas stream. In order to establish contamination control in the gas delivery system, the surface interactions of the multispecies system with the delivery line surface was characterized. Desired concentrations of moisture in ammonia and UHP nitrogen mixtures were produced in a gas mixing section capable of delivering controlled mass flow rates to an EPSS test bed. Transient moisture profiles during adsorption and desorption tests at various test bed temperatures, mass flow rates and moisture concentration were captured by a highly sensitive analyzer. A mathematical model for single and multi-species adsorption was used in conjunction with experimental data to determinate kinetics parameters for moisture, ammonia system in EPSS surface. The results indicate competitive site binding on EPSS between ammonia and water molecules. Also, the concentration distribution of each species between surface, gas phase is interdependent and in accordance to the kinetic parameters evaluated. Back diffusion of impurity is a major source of contaminant introduction into UHP streams. Back diffusion refers to the transport of contaminants against the flow of bulk process stream. Molecular species can back diffuse from dead volumes, during mixing operations etc., simply when there is a gradient of concentration. A steady state approach was used to analyze the mechanism and effects of various geometrical and operational parameters on back diffusion. High sensitivity moisture detectors were used to capture the dynamics of contamination in a section of a generic distribution system. Results showed that back diffusion can occur through VCR fittings, joints and valves under constant purge. General trends on the effect of design parameters on back diffusion were derived from studies on various orifice sizes, system dimensions, flow rates and test moisture concentrations. Coupled parametric studies helped identify critical variable groups to perform dimensionless analysis on back diffusion of moisture. Crucial points where back diffusion can be minimized or completely eliminated are identified to help set up guidelines for cyclic and steady purge parameters without excessive use of expensive UHP gas or installation of unnecessarily large factors of safety. Wet cleaning of micro/nano sized features is a highly frequent process step in the semiconductor industry. The operation is a huge consumer of ultra-pure water and one of the main areas where process time minimization is focused. Comprehensive process model is developed to simulate the mechanism and capture the dynamics of rinsing high aspect ratio Silicon features in the nanometer scale. Rinsing of model trench, post etch contaminated with ammonium residue is studied. Mass transport mechanisms such as convection, diffusion are coupled with surface processes like adsorption and desorption. The effect of charged species on the trench surface and in the bulk, the resultant induced electric field on the rinse dynamics and decay of surface species concentration is studied. General rinsing trends and critical points in change in mechanisms were identified with critical groups such as mass transfer coefficient and desorption coefficient. The model is useful in evaluating process efficiency in terms of rinse time and DI water consumption under varying process temperature, contaminant concentration, and rinse fluid flow rate. The generic build of the model allows extension of its functionality to other impurity-substrate material couples.

Page generated in 0.1222 seconds